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Abstract
Scientific domains are fluid entities that change and turn as
time passes. Take machine learning as an example. Up until
the ’90s, most of the methods were expert-knowledge-driven.
However, as time passed, more data-driven approaches ap-
peared, finally leading to the advent of deep learning meth-
ods. As a result, in a span of 30 years, the field has gone
through many changes and breakthroughs and is at a point
where many novelties have a life span of shorter than five
years. In parallel, a regular researcher’s career span is around
the same length. Consequently, being a researcher requires
shifts in the field of study throughout one’s career. Besides,
researchers’ scientific interests are inherently dynamic and
change over time. Hence, there exists a dynamicity to au-
thors’ interests and fields of work over time. In this work,
we study this phenomenon through systematic approaches
for representing and tracking dynamicity in different epochs.
Our representation approaches are based on the idea that each
author could be represented as a distribution of other au-
thors. Concurrently, our tracking approaches rely on estab-
lished mathematical concepts for measuring the change be-
tween two distributions. We focus on the publications in the
2001-2020 range and present a set of analyses built on top
of the introduced approaches to understanding the potential
connection between dynamicity and success.

1 Introduction
The past few decades have been an unprecedented era of
scientific discoveries, with the sheer number of publications
rising steadily (Bornmann and Mutz 2015). This constant
growth of research collaborations has led to the emergence
of new interdisciplinary domains, prompting researchers to
expand their research horizons. This expansion, combined
with the continuous development of scientific domains and
the inherent nature of research to explore new areas, results
in a potentially volatile set of research directions. This work
introduces approaches for systematically studying this fluid-
ity and uncovering interesting behaviors among authors.

Scientific publications are the information vessels scien-
tists use to communicate their findings, methodologies, and
critiques. At the same time, publications are reflections of
their authors’ interests and fields of study. These publica-
tions are bound together through citations that specify the
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foundations of each work. As a result, citations create tightly
connected groups of publications with similar research di-
rections. Consequently, authors with a high number of in-
teractions in these groups, either through collaborations or
citations, are more likely to have similar interests.

Community detection algorithms are graph partitioning
approaches that identify sets of tightly connected nodes
that are loosely connected to nodes outside their respec-
tive sets (Blondel et al. 2008; Traag, Waltman, and Van Eck
2019). When employed on citation networks, these algo-
rithms yield a set of communities where each community
contains highly related publications. These extracted com-
munities could then be exploited for indirectly analyzing au-
thors’ interests through publications and citations as proxies.

In this work, we study the authors’ dynamicity phe-
nomenon from a relational standpoint. More specifically, we
focus on the following research questions:

1. How can we characterize and quantify the interests
and dynamicity of an author?

2. Is there any connection between dynamicity and suc-
cess due to reasons such as adaptability or diversity?

To this end, we first create two knowledge graphs (KG)
from publications in the 2001-2020 period, each encompass-
ing ten years’ worth of scholarly information, i.e., publi-
cations and authors. Then, we introduce three vectorizing
approaches focused on presenting authors’ interest in one
epoch, and two tracking approaches focused on quantifying
the change in interests in two distinct epochs. Our vectoriz-
ing approaches are built on top of relational information in
the KGs and represent authors as a distribution of other au-
thors. Meanwhile, our tracking approaches are based on the
two well-known cosine similarity and relative entropy (Kull-
back–Leibler divergence) measures. By mix-and-matching,
these approaches yield six different dynamicity scores for
each author. We then use these scores to investigate the con-
nection between authors’ dynamicity and success. Our anal-
yses showcase the connection between success, diversity,
and adaptability in research.

2 Related Work
Bird et al. (2009) analyzed community structures in the
DBLP bibliographic database to investigate collaborative



Dataset CG-2010 CG-2020

# Publications 19,707,369 33,743,276

# Authors 20,333,216 36,077,559

# Citation Links 167,133,583 323,927,950

# Authorship Links 67,531,472 137,160,724

Table 1: Statistics of the extracted KGs.

connections in computer science and interdisciplinary re-
search at the individual, within-area, and network-wide lev-
els. They developed quantifiable metrics such as longitudi-
nal assortativity over the number of publications, collabora-
tors, and career length to study author overlap and migration
patterns. Prior to Bird et al. (2009), Newman (2001) used
data from publications in physics, biomedical research, and
computer science to build co-authorship collaboration net-
works. They looked at the number of publications produced
by authors, the number of authors per article, the number
of collaborators that scientists have, the existence and size
of a significant component of connected scientists, and the
degree of clustering in the networks. They examined col-
laboration patterns among participants and discovered that
these variables follow a power law distribution and that col-
laboration relationships are transitive. Paul et al. (2015) also
used the DBLP database in their study to develop a citation-
collaboration network to rank authors based on their contri-
butions in terms of co-authorship and citations while verify-
ing them against the h-index. They also carried out a com-
parative examination of the change in author ranking for dif-
ferent parts of the author spectrum over time.

3 Dataset
OpenAlex (Priem, Piwowar, and Orr 2022) is a free and open
catalog of scholarly entities that provides metadata for publi-
cations, authors, venues, institutions, and scientific concepts,
along with the relationships among them. It gathers data
from sources such as Crossref, Microsoft Academic Graph
(MAG), ROR, ORCID, DOAJ, PubMed, PubMed Central,
and Unpaywall. We use the OpenAlex dump obtained on
2022-12-07 to construct our dataset for this work. Given this
dump, we first extract a KG containing all the publications
and their connections, i.e., citation links. Then, we extract
two induced KGs by filtering the publications with publica-
tion dates within two ranges of 2001-2010 and 2011-2020,
naming them CG-2010 and CG-2020, respectively. Follow-
ing this, we add the authorship information for each KG for
all the publications. Finally, we drop all the nodes with a
zero degree (in and out) in both KGs. After this procedure,
we end up with two temporally-scoped KGs containing au-
thorship and citation information for all the publications in
the 2001-2010 and 2011-2020 periods. Table 1 illustrates the
statistics of the extracted KGs. To handle the large size of the
raw dump, we resorted to using the KGTK toolkit for all our
KG processing procedures (Ilievski et al. 2020).

4 Methodology
We break down the problem of characterizing authors’
dynamicity into two sets of approaches: Vectorizers and
Trackers. Vectorizers, as described in Section 4.1, focus
on presenting authors’ interest in one epoch. As described
in Section 4.2, trackers focus on quantifying the change
in interests in two distinct epochs. When combined, these
approaches provide a systematic way of characterizing au-
thors’ dynamicity.

4.1 Vectorizers
We introduce three approaches for vectorizing authors’ in-
terests in a given epoch. The main idea of all these ap-
proaches is that each author’s interests could be modeled
through a distribution over the set of other authors. Our first
two approaches rely only on the information that could be
directly extracted from citation links. In contrast, the third
approach uses external information by building upon the
output of a community detection algorithm. As a result, the
third approach is prone to erroneous information propagated
from the underlying community detection algorithm; in re-
turn, it gains access to more complex information compared
to the first two approaches.

Co-authors In this approach, we present an author’s inter-
ests through their co-authors. To this end, given two arbitrary
authors p and q and epoch t, we define the co-author weight
value ψt

p(q) as
ψt
p(q) = |Vt

p ∩ Vt
q| (1)

where Vt
x is the set of publications by author x in epoch t.

Building on top of these co-author weight values, for any
arbitrary author p, we form the representative vector ztp as

ztp = [ψt
p(a0), ψ

t
p(a1), . . . , ψ

t
p(a|A|)] (2)

where A is the set of all authors in the KG. It is important
to note that these representative vectors are extremely sparse
due to the large cardinality of A.

Citations In this approach, we present an author’s inter-
ests through its citing and cited authors. To this end, given
two arbitrary authors p and q and epoch t, we define the ci-
tation weight value ϕtp(q) as

ϕtp(q) =
∑
v∈Vt

p

|N t
v ∩ Vt

q|+
∑
u∈Vt

q

|Vt
p ∩N t

u| (3)

where Vt
x is the set of publications by author x in epoch

t and N t
y is the set of all publications cited by publication

y in epoch t. Building on these citation weight values, for
any arbitrary author p, we form the representative vector ztp
following Equation 2, replacing ψt

p with ϕtp.

Communities In this approach, we present an author’s in-
terests through authors with whom they publish in the same
research communities. To this end, given a KG encompass-
ing epoch t, we first extract the citation graph by remov-
ing all non-publication nodes, i.e., authors. Then, we run the
Leiden (Traag, Waltman, and Van Eck 2019) community de-
tection algorithm to extract a set of communities C. We rely



on the hypothesis that each community represents a some-
what unique field of study. We use a modified version of the
Leiden algorithm that limits the maximum number of gener-
ated communities and the number of publications in a com-
munity. Doing so avoids the creation of large unfocused, or
small insignificant communities. Given the set of extracted
communities C, for any two arbitrary authors p and q, we
define the co-occurrence weight value ηCp (q) as

ηCp (q) =

{∑
c∈C

|cp|
|Vt

p|
log2(|cq|+ α) p ̸= q

0 p = q
(4)

where cx is the set of publications by author x in community
c, Vt

x is the set of publications by author x in epoch t, and
α = 0.001. In this formalization, the effect of each commu-
nity is weighed on the number of publications an author has
in that community, e.g., cp

|Vt
p|

. Moreover, each author’s influ-
ence is smoothened by taking the log value of their number
of publications, e.g., log2(cq + α). The resulting equation
highlights the connection between any two authors that have
many papers in the same communities and simultaneously
waives the need for tracking the communities themselves.
Building on top of these co-occurrence weight values, for
any arbitrary author p, we can form a representative vector
ztp following Equation 2, replacing ψt

p with ηCp .

4.2 Trackers
We introduce two tracking approaches for quantifying the
dynamicity between two distinct epochs. These two ap-
proaches are built on well-known mathematical concepts of
cosine similarity and relative entropy.

Cosine Similarity (S-score) Given the representative vec-
tors of an arbitrary author p from two time periods, ztp and
zt

′

p , we calculate the cosine similarity score St,t′

p defined as

St,t′

p =
ztp.z

t′

p

∥ztp∥∥zt
′
p ∥

. (5)

The calculated cosine similarity scores represent the stability
of authors’ interests in two epochs, i.e., the higher the value,
the more consistent the authors’ interests.

Relative Entropy (E-score) Building on top of the repre-
sentative vectors, for each arbitrary author p in period t, we
define a probability distribution as

F t
p(q) =

ztp[q] + ϵ∑
q′∈A z

t
p[q

′] + ϵ|A|
∀q ∈ A (6)

where ϵ = 1
|A| is the prior probability and A is the set of all

authors in the KG. Then, given the probability distributions
of an arbitrary author p from two time periods, F t

p and F t′

p ,
we calculate the relative entropy Et,t′

q as

Et,t′

p = DKL(F t′

p ∥F t
p) =

∑
q∈A

F t′

p (q) log(
F t′

p (q)

F t
p(q)

) . (7)

In contrast to the cosine similarity score, the calculated rela-
tive entropy scores represent the volatility of authors’ inter-
ests in two epochs, i.e., the higher the value, the less consis-
tent the authors’ interests are.

Figure 1: The effect of entropy on average citation count.

5 Analyses
Throughout this section, we run all our analyses on a set of
randomly 10,000 sampled authors. More specifically, we do
a weighted sampling without replacement using the citation
counts. This procedure allows us to manage the computa-
tional costs of running these analyses.

5.1 Statistical Dependence Analysis
This analysis studies the connection between the introduced
stability scores and success across two epochs. We use the
relative change in average citation count as the proxy metric
for success. The main intuitions behind this metric are 1) ci-
tation count is an accepted correlated metric for success in
the community, 2) using average mitigates the effect of the
high number of publications from an author, and 3) using
relative change locally normalizes the metric values. More-
over, to reduce the potential noise in the data, we remove the
outliers by filtering out samples outside two standard devia-
tions of relative change in average citation count mean.

To quantify the strength of this connection, we use the es-
tablished bivariate correlation and univariate linear regres-
sion measurements. We also include a random noise vector-
izer as a sanity check to our methodology. Table 2 presents
the results of our analysis with one of the introduced scores
as the independent variable X and the number of citations
as the dependent variable Y . As evident from Table 2, ev-
ery introduced score has a significant connection with suc-
cess, some in the same direction and some in the opposite di-
rection. Moreover, the “Citations” vectorizer showcases the
highest correlation with the measurement for success which
signifies the effect of author interactions.

5.2 Entropy Analysis
In this analysis, we study the connection between diversity
and success. We use the authors’ entropy across the ex-



Tracker Vectorizer PCC Coef. SE t P > |t|

S-score
Random -0.001 -967.70 5156.52 -0.188 0.851

Co-authors -0.121 -26.03 2.15 -12.11 0.000
Citations -0.138 -27.95 2.02 -13.81 0.000

Communities -0.082 -25.72 3.17 -8.12 0.000

E-score
Random 0.015 47.03 31.15 1.51 0.131

Co-authors -0.057 -0.64 0.11 -5.65 0.000
Citations 0.198 3.019 0.15 20.00 0.000

Communities 0.048 0.66 0.14 4.73 0.000

Table 2: Univariate linear regression and bivariate correla-
tion metrics between introduced scores and relative change
in average citation count. Legend: PCC: Pearson correlation
coefficient.

Metric Est. SE z P > |z|

ATE -189.157 36.274 -5.215 0.000
ATT -176.136 29.762 -5.918 0.000
ATU -202.178 43.471 -4.651 0.000

Table 3: Treatment effect evaluations. Legend: ATE: Aver-
age treatment effect, ATT: Average treatment effect on the
treated, ATU: Average treatment effect on the untreated.

tracted communities as a proxy for diversity. As for success,
with similar intuitions to the previous section, we use the av-
erage citation count as the proxy metric. Formally, given the
set of extracted communities C, for any arbitrary author p,
we calculate the entropy across communities HC

p as

wc
p =

|cp|
|Vt

p|
(8)

HC
p = −

∑
c∈C

wc
p log2(w

c
p) (9)

where cx is the set of publications by author x in commu-
nity c and Vt

x is the set of publications by author x in epoch
t. Figure 1 illustrates the results of our analysis. We can ob-
serve in Figure 1 that in both epochs average citation count
increases with the increase of entropy up until a point and
then drops again. This observation indicates the benefit of
having a diverse portfolio, but simultaneously too much di-
versity could negatively impact success.

5.3 Propensity Score Matching Analysis
This analysis focuses on the potential causal relationship be-
tween adaptability and success in two epochs by utilizing the
propensity score matching (PSM) technique. We use the in-
crease in entropy and citation count in the second epoch as
proxy metrics for adaptability and success, respectively. Fol-
lowing this, we designate the increase in entropy as the treat-
ment variable and the citation count in the second epoch as
the outcome variable. As for the confounding variables, we
use the publication counts from both epochs and the cita-
tion count in the first epoch. To check the matching quality,
we plot one of the confounding variables, i.e., publication
counts in the second epoch, against the outcome variable for

Figure 2: Matched groups for the confounding variable, i.e.,
publication count in the second epoch, for both control and
treatment groups against the outcome variable.

both control and treatment groups in Figure 2. Moreover, Ta-
ble 3 presents the treatment effect evaluation results. From
Table 3, we can observe that the average treatment effect
(ATE) has a larger value compared to the average treatment
effect on treated (ATT) while both have a negative value.
This observation indicates that while, in general, the authors
have experienced a decline in the number of citations, the
increase in entropy slows down this phenomenon. Hence,
adaptability, i.e., an increase in entropy, could be seen as a
remedy for a decline in success.

6 Conclusion and Future Works

Motivated by our observation of scientific domains’ fluid-
ity and empowered by the emergence of public reposito-
ries of scholarly data, we presented a thorough systematic
study of the author dynamicity phenomenon in this work.
With the idea of representing authors’ interests and fields
of work by a distribution of other authors, we introduced
three different systematic approaches vectorizing each au-
thor in a single epoch. Then, to track an author’s behavioral
changes between two epochs, we introduced two approaches
built on top of the extracted vectors and well-known mathe-
matical approaches for quantifying change. Based on these
approaches, we presented in-depth analyses to understand
the connection between success better, as measured by ci-
tation counts, and specific dynamic behaviors, as measured
through the introduced approaches.

Some of the straightforward extensions of our work for
future studies are 1) including more authors, 2) using a more
extended period, and 3) changing the temporal granularity
for tracking changes. Moreover, we used a relatively simple
metric as our success proxy; future works could work with
other metrics, such as the h-index or i10-index.
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