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ABSTRACT
In recent decades, the growing scale of scientific research has led to
numerous novel findings. Reproducing these findings is the foun-
dation of future research. However, due to the complexity of ex-
periments, manually assessing scientific research is laborious and
time-intensive, especially in social and behavioral sciences. Al-
though increasing reproducibility studies have garnered increased
attention in the research community, there is still a lack of system-
atic ways for evaluating scientific research at scale. In this paper, we
propose a novel approach towards automatically assessing scientific
publications by constructing a knowledge graph (KG) that captures
a holistic view of the research contributions. Specifically, during
the KG construction, we combine information from two different
perspectives:micro-level features that capture knowledge from pub-
lished articles such as sample sizes, effect sizes, and experimental
models, and macro-level features that comprise relationships be-
tween entities such as authorship and reference information. We
then learn low-dimensional representations using language mod-
els and knowledge graph embeddings for entities (nodes in KGs),
which are further used for the assessments. A comprehensive set
of experiments on two benchmark datasets shows the usefulness
of leveraging KGs for scoring scientific research.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Applied
computing → Law, social and behavioral sciences.
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1 INTRODUCTION
In recent years, there has been an explosion in the number of sci-
entific articles published in journals and conferences and posted
on pre-print servers. In order for the conclusions of scientific publi-
cations to be trusted and accepted by the research community, the
underlying methods and techniques must be reproducible [18, 23].
Since new research findings build upon prior results, reproducibil-
ity is an essential component of scientific research. Unfortunately,
a growing body of research suggests that results in scientific litera-
ture are not as reproducible as expected [5, 6, 14, 25]. Some other
researchers, from a range of disciplines such as psychology [24],
biomedicine [13], economics [11] and social sciences [3], revisited
a variety of published scientific papers, manually assessed the cred-
ibility of them by conducting direct replication studies, and further
confirmed the reproducibility issue. The underlying difficulties of
reproducible research coupled with the growing rate of new publi-
cations motivates the urgent need for large-scale models to curate
information about research methods and assess the reproducibility
of scientific results.

Although the replication studies have provided ways to identify
credible publications, they also showed the difficulty of assess-
ing publications at scale. This is because, in many research fields
such as social and behavioral sciences, the process of reproducing
experimental results is resource-intensive, and researchers are de-
incentivized from running replication studies since novel results
advance careers. For example, replicating a social-psychology study
requires domain experts to understand the experimental design and
different groups of participants for comparison. Since researchers
usually have limited resources, it is impractical to evaluate all re-
lated work manually. Therefore, it becomes more and more impor-
tant to have automated systems to perform the assessments and
provide insights for fellow researchers.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: An example KG with additional information associ-
ated entities. 𝑃𝐴, 𝑃𝐵 are paper entities, 𝐴,𝑈 and 𝑉 are author,
organization, and venue entities, respectively. Different enti-
ties have different features associated with them.

In the spirit of automatically assessing papers, researchers have
started applying advanced machine learning techniques. For exam-
ple, Altmejd et al. [4] train predictive machine learning models to
study the effect of different variables in terms of predicting repro-
ducibility. Their experiments identified several basic experimental
features, such as the sample and effect sizes of the original papers,
that are useful for predicting reproducibility. In addition, Yang et al.
[31] collect paper abstracts and train a word embedding model [22]
to capture textual information of the papers for making predictions.

Despite the usefulness of these existing approaches, higher-order
information is ignored. For example, a finding might be hard to be
reproduced if it is purely based on another irreproducible finding.
Such kind of information could potentially be captured if relation-
ships between papers are considered. Based on this intuition, in
this paper, we propose a novel approach for assessing scientific re-
search using knowledge graphs (KGs) which have been successfully
used in many applications such as search, question answering and
data integration [9, 19, 21]. Our approach incorporates informa-
tion from two different perspectives: micro-level and macro-level.
Specifically, micro features include explicit inter-paper features
such as sample sizes and effect sizes, and implicit features that
encode paper content with pre-trained language models. Macro
features include high-level intra-paper relationships between differ-
ent elements such as author-paper, paper-paper, and paper-venue
relationships. We then construct KGs such that entities represent
different elements (i.e. papers, authors) and edges represent differ-
ent relationships between the elements. In addition, each entity
may also have additional associated features. We then improve and
apply KG embedding methods to learn hidden representations for
entities. Finally, a neural network is trained to assess papers using
their hidden representations. Figure 1 shows an example KG with
task-relevant entities and relations.

In this paper, for the first time, we propose to incorporate fea-
tures from two perspectives for assessing scientific papers. We
construct KGs with both micro- and macro-features to encode rich
information for papers. To incorporate different types of features
associated to entities, we then adjust the existing KG embedding
methods (i.e. LiteralE) for our task to learn hidden representations

for papers. We finally experimentally demonstrate the usefulness
of our approach on two benchmark datasets.

2 APPROACH
In this section, we introduce our approach in details. We first show
two levels of information (i.e. micro andmacro) which are leveraged
in our approach. We then describe how a knowledge graph (KG) is
constructed with additional information associated entities for our
task. We finally demonstrate the extended KG embedding method
that supports our KGs.

2.1 Micro and Macro Information
We consider micro- and macro-level information in our task. Specif-
ically, micro-level information includes features of entities them-
selves. For example, models, P-values and sample sizes are features
within papers; years and series are features of conferences; counts
of citations and counts of papers are features of authors, etc. For
assessing papers, these features could be helpful. For example, a
large P-value may indicate a low credibility while a high citation
count may suggest a high reproducibility.

In addition to micro-level features, we also incorporate macro-
level information. We refer to macro-level information as infor-
mation that capture relationships between base entities, such as
the citation relationships between papers, affiliated relationship
between authors and organizations, and authorship between pa-
pers and authors, etc. We believe such information can potentially
be useful due to the intuition that social influence may exist in
research studies as well. For example, papers with robust methods
are likely to cite other papers with robust methods, papers from a
higher-prestige author or institute may be more reproducible, and
papers published in top-tier conferences may be more reliable, etc.

2.2 Knowledge Graph Construction
To incorporate both micro and macro information, we propose to
construct knowledge graphs such that micro features are used as
additional information associated with entities while macro rela-
tionships are used to construct the network structure. Formally, a
KG can be represented as 𝐺 = {⟨𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ⟩|𝑒𝑖 ∈ 𝐸, 𝑒 𝑗 ∈ 𝐸, 𝑟𝑘 ∈ 𝑅}
where 𝐸 is a set of entities and 𝑅 is a set of relations. ⟨𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ⟩
indicates that the relation 𝑟𝑘 exists between entities 𝑒𝑖 and 𝑒 𝑗 . In the
graph, each node represents an entity and each edge represents a di-
rected relation between two entities. Besides the triples, in our task,
each entity 𝑒𝑖 has two types of associated information 𝑑𝑖 and 𝑛𝑖
which represent the encoded description and some other numerical
features of 𝑒𝑖 , respectively.

Our KG schema includes the following 6 main types of entities:
(1) Affiliation: Entities of universities, companies and other orga-

nizations that authors affiliated to. Their names are provided
as descriptions and there are numeric features rank, paper
count and citation count.

(2) Author: Entities of authors of the publications. Similarly,
their names are descriptions and there are rank, paper count
and citation count as numeric features.

(3) Field of Study: Entities of research fields that publications
belong to. They have rank as numeric features and their
names as descriptions.



P

A

Abstract:
This paper
shows …

Name:
Michael

0.1
10
..

..

..
1

Text
E
ncoder

N
um

E
ncoder

N
um

E
ncoder

LP

LA

A
uthor

LiteralE

Paper
Embeddings

Scorer

Figure 2: The workflow of our approach. Given a triple
⟨𝐴,𝐴𝑢𝑡ℎ𝑜𝑟, 𝑃⟩, the numeric features of entities are passed to
a Number Encoder, and the descriptions are passed to a text
encoder. The static number and description vectors are con-
catenated and passed to LiteralE as literal vectors. Paper vec-
tor representations are finally obtained and used as input for
predicting reproducibility scores.

(4) Publication: Entities of papers. Abstracts (or titles if abstracts
are not available) are used as descriptions. There are 24 nu-
meric features including experiment features (e.g. P-values,
sample sizes, and number of studies), transparency-related
features (e.g. if the data and code open and if there are pre-
registrations), and network measures (e.g. the paper rank
among all papers, the network authority and clustering co-
efficient of the paper in the citation network.

(5) Venue: Both journal and conference entities are included.
They have similar numeric features as Affiliation.

(6) Constant: All other entities are constants. For example, year
of the publication, type and sub-type of the venue. No nu-
meric features are considered for these entities.

To connect entities, we consider 10 different relations. For exam-
ple, an author entity is affiliated to an affiliation entity; a publication
entity is published in a venue entity; a publication cites another pub-
lication entity; an author entity is author of a publication entity.
We use the Microsoft Academic Graph (MAG) 1 to collect such rela-
tionship information. Given a set of origin publications, we traverse
the MAG and keep the publications within two-hop away from the
origin publications as well as their author and venue entities.

2.3 Scoring Publications with KG Embeddings
We use the constructed KG to learn representations for publications
and score them using their representations (also called embeddings).
Most KG embedding methods focus on capturing KG structures
and relation patterns. For example, TransX [10, 15, 20] considers
relations as translations such that the embedding of source entities
are translated into target entities using the relation embeddings.
DistMult [30] applies a three-way interactions between entities and
relations using matrices. ComplEx [26] proposed to use complex
embeddings (real and imaginary) for both entities and relations in
order to handle antisymmetric relations. More recently, researchers
have been considering involving additional information of entities
to assist representation learning. For example, Xie et al. [28], Xu et al.
[29] involve structure and textual information to learn represen-
tations. LiteralE [17] combines literals and structural embeddings
with a learnable function to form the final embeddings.

1https://www.microsoft.com/en-us/research/project/microsoft-academic-graph

In this paper, since LiteralE is a general framework which accepts
any classic KG embedding methods (i.e. TransE, ComplEx, DistMult,
etc), we adopt it as our base model. Figure 2 demonstrates the
workflow of our approach. Let ⟨𝑒𝑠 , 𝑟 , 𝑒𝑜 ⟩ be a triple, 𝑑𝑠 and 𝑑𝑜 are
the descriptions associated to 𝑒𝑠 and 𝑒𝑜 , 𝑛𝑠 and 𝑛𝑜 are the lists of
numerical features associated to 𝑒𝑠 and 𝑒𝑜 , respectively. We apply
SciBERT [7], a BERT-based [12] model pre-trained on scientific text,
to encode the descriptions such that

vsd = 𝑆𝑐𝑖𝐵𝐸𝑅𝑇 (𝑑𝑠 ) vod = 𝑆𝑐𝑖𝐵𝐸𝑅𝑇 (𝑑𝑜 ) .

vsd, v
o
d ∈ R𝑁 where 𝑁 is the dimension of the hidden states. The

numerical feature lists are converted by an element-wise Exponent
Number Converter which collapses numbers into bins [8].

vsn = 𝐸𝑥𝑝 (𝑛𝑠 ) von = 𝐸𝑥𝑝 (𝑛𝑜 ) .
vsn, von ∈ R𝑀 where 𝑀 is the number of numerical features. For
example, if the initial feature list is [1.1, 10.5], the number converter
may take the logarithm of individual numbers and convert the list
into an integer list [0, 2]. LiteralE learns a function 𝑔 to convert an
original entity embedding into a new embedding with both textual
and numeric features involved.

vse = 𝑔(ve, vsd∥v
s
n), voe = 𝑔(vo, vod∥v

o
n)

where ve and vo are original entity embeddings. With the literal-
enriched vectors, 𝑔 is learned according to the scoring function
𝑓 (vse, vr, voe ) where 𝑓 is determined by the base model used in
LiteralE. For TransE,

𝑓 = |vse + vr − voe |,
For DistMult,

𝑓 = vse
𝑇
𝑀𝑟voe

where𝑀𝑟 is a diagnoal matrix for 𝑟 . For ComplEx,

𝑓 = 𝑅𝑒 (vse𝑇𝑀𝑟voe )
where 𝑅𝑒 means the real part of the vector.

After training the KG embedding model, we take static learned
publication representations and apply a Multi-Layer Perceptron
(MLP) on them to predict continuous scores. For the MLP, we use
Mean Squared Error as training loss.

3 EXPERIMENTS
In this section, we first provide statistics of the constructed KGs of
two different datasets. We then compare our method with several
baseline methods and analyze the results.

3.1 Datasets
We use two datasets in our experiments. The first dataset is from the
Reproducibility Project: Psychology [24]. To determine a successful
replication, we use the significance of the meta-analytic combina-
tion between the original and replication study (coded as a binary).
It contains 70 paper in total from the psychology domain. The sec-
ond dataset SCORE is from the SCORE project [3]. The dataset
contains 2362 papers from several different social and behavioral
domains. In this dataset, the scores indicate the credibility of the
claims in the papers. For both datasets, we consider continuous
scores between 0 and 1 such that a larger value indicates a higher
credibility/reproducibility.

https://www.microsoft.com/en-us/research/project/microsoft-academic-graph


Table 1: Statistics of the KGs

# Nodes # Edges

RPP 148,983 1,769,883
SCORE 2,287,066 36,144,015

For both datasets, we create the KG by starting from the papers
within the dataset and traversing over the paper citation and author
academic graphs. The papers within two hops from the root papers
are kept. All information (authors, affiliations, venues, etc) directly
related to the selected papers are also kept in the KG. Table 1 shows
more details of the constructed KGs.

3.2 Experimental Settings
All our experiments are run on a single Nvidia Quadro RTX 8000
GPU.We use Python to implement themodels 2.We use PyKEEN 3 [2]
library as the backbone of the KG embedding methods. For both
KGs, we set the embedding dimension to 100, batch_size to be 2048,
negative sample size to be 16, and learning rate to be 0.0001. We
run the KG embedding models 10 epochs for RPP and 3 epochs
for SCORE. For our methods, we apply a simple linear layer in Lit-
eralE to fuse description and numeric features. During running the
downstream task, since different methods may have different input
dimensions, we freeze the embedding models and use a MLP which
first projects the input into a vector with 50 dimensions and then
predicts a continuous score. For all methods, we run 5-fold cross
validations. For each experiment, we set batch_size to 4, learning
rate to 1e-5 and run 100 epochs. We set the random seed to be 42.
We report the average performance.

3.3 Results
Compared Methods. We evaluate the following models on two

benchmark datasets:
• Random: Each score is a continuous value randomly sam-
pled between 0 and 1.

• SciBERT: Entity descriptions are encoded by SciBERT [7].
The hidden states are used as inputs for scoring papers. They
are also a part of our method.

• Numeric: Only numeric features are used as inputs.
• Yang: The approach proposed in [31] that leverages word
embeddings trained on paper abstracts collected from MAG.

• TransE [10]: A classic translation-based KG embedding
method. Only graph structures are leveraged in the method.

• DistMult [30]: A KG embedding method based on bilinear
interactions between entity and relation representations.

• ComplEx [26]: A KG embedding method that represents an
entity from both the real and imaginary perspectives.

• Ours (TransE): Our LiteralE-based [17] method that in-
volves both description features, numeric features and KG
structures. TransE is used as the base model in LiteralE.

• Ours (DistMult): DistMult is the base model in LiteralE.
• Ours (ComplEx): ComplEx is the base model in LiteralE.

2https://github.com/kianasun/kg4rr
3https://pykeen.readthedocs.io

Table 2: Main results. Each number represents a RMSE/KT
score. The best performing scores are highlighted and the
second best scores are underlined.

RPP SCORE

RMSE↓ KT↑ RMSE↓ KT↑
Random 0.6080 -0.0642 0.3233 0.0040
SciBERT 0.4765 0.0694 0.1344 0.1675
Numeric 0.4731 0.0697 0.1379 0.1032
Yang 0.4404 0.1191 0.1326 0.1926

TransE 0.4931 -0.0856 0.1619 -0.0210
DistMult 0.5010 -0.0508 0.1674 -0.0127
ComplEx 0.5131 0.0573 0.1526 -0.0283

Ours (TransE) 0.4041 0.2454 0.1323 0.1809
Ours (DistMult) 0.4215 0.2437 0.1314 0.1894
Ours (ComplEx) 0.4420 0.1846 0.1316 0.1852

Table 3: Ablation study on encoders. The best performing
scores under individual categories are highlighted.

RPP SCORE

RMSE↓ KT↑ RMSE↓ KT↑
Full (TransE) 0.4041 0.2454 0.1323 0.1809
- Remove Num Encoder 0.4665 0.0536 0.1396 0.0651
- Use BERT 0.4015 0.3299 0.1330 0.1664
- Use LongFormer 0.4528 0.1320 0.1341 0.1588

Full (DistMult) 0.4215 0.2437 0.1314 0.1894
- Remove Num Encoder 0.4661 -0.0342 0.1387 0.0674
- Use BERT 0.4258 0.1912 0.1316 0.1907
- Use LongFormer 0.4519 0.1553 0.1329 0.1614

Full (ComplEx) 0.4420 0.1846 0.1316 0.1852
- Remove Num Encoder 0.4691 -0.1669 0.1351 0.1427
- Use BERT 0.4420 0.1054 0.1309 0.1957
- Use LongFormer 0.4606 0.0788 0.1340 0.1557

Metrics. We consider continuous scores and leverage two met-
rics: Root Mean Squared Error (RMSE) and Kendall’s Tau (KT) [16].
Given a list of ground-truth scores and predicted scores, KT mea-
sures the correlation between the two lists and RMSE shows the
difference between them. KT scores are within the range [−1, 1]
such that the larger the better. RMSE scores are non-negative values
such that the smaller the better.

Main Results. We report the main results in Table 2. We find:
1) Both micro- and macro- features perform better than random
guess. 2) Although SciBERT and Numeric perform better than pure
KG embedding methods, literal-involved KG embedding methods
achieve better performance by jointly learning useful information
from both micro and macro perspectives and also generally outper-
form the previous published method. 3) Comparing different KG
embedding methods, DistMult performs better than TransE and
ComplEx by a small margin. 4) The RMSEs of SCORE are generally

https://github.com/kianasun/kg4rr
https://pykeen.readthedocs.io


smaller than those of RPP because ground-truth scores in RPP are
all binary while the scores in SCORE are all continuous values.

Ablation Study. We show ablation studies in Table 3. We first
show the effectiveness of the Exponent number encoder. We re-
move the number encoder and use the original numeric features to
learn the embeddings and compare their results. In all cases, RMSE
increases and KT decreases after removing the encoder. This shows
that dividing numbers into bins could be easier for models to learn
representations. In the second experiment, we replace the SciBERT
by another two language models BERT and LongFormer. After us-
ing BERT, in 3 out of 5 cases (for ComplEx, the two variants achieve
the same performance), RMSE increases, and in 3 out of 6 cases, KT
decreases. This experiment shows that SciBERT achieves slightly
better performance than the vanilla BERT. After using LongFormer,
the performance decreases by a small margin in all cases. Compar-
ing different KG embedding methods, ComplEx performs the best
on SCORE and TransE performs the best on RPP.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed to apply knowledge graphs to assess sci-
entific papers at scale. Our proposed approach leverages explicit fea-
tures extracted from papers, hidden features encoded by pre-trained
language models, and higher-order relationships between papers,
authors and venues. We also applied a literal-involved knowledge
graph embedding method to learn representations for paper entities
and use the learned hidden vectors to provide scores for papers.
We hope the scores generated by our system could provide more
insights for researchers and help resources in replication studies to
be used for evaluating most important papers.

As an initial attempt, we applied a few classic KG embedding
methods and simply concatenated two different types of informa-
tion during training. In the future, more advanced KG embedding
methods [1, 27] can be experimented on and more information
fusion strategies can potentially be integrated into the model.
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