
Retrieving Complex Tables with Multi-Granular Graph
Representation Learning

Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, Pedro Szekely
Department of Computer Science & Information Sciences Institute, University of Southern California

Los Angeles, California, USA
{fwang598,kexuansu,muhaoche,jpujara,szekely}@usc.edu

ABSTRACT
The task of natural language table retrieval (NLTR) seeks to retrieve
semantically relevant tables based on natural language queries. Ex-
isting learning systems for this task often treat tables as plain text
based on the assumption that tables are structured as dataframes.
However, tables can have complex layouts which indicate diverse
dependencies between subtable structures, such as nested headers.
As a result, queries may refer to different spans of relevant content
that is distributed across these structures. Moreover, such systems
fail to generalize to novel scenarios beyond those seen in the train-
ing set. Prior methods are still distant from a generalizable solution
to the NLTR problem, as they fall short in handling complex ta-
ble layouts or queries over multiple granularities. To address these
issues, we propose Graph-based Table Retrieval (GTR), a gener-
alizable NLTR framework with multi-granular graph representation
learning. In our framework, a table is first converted into a tabular
graph, with cell nodes, row nodes and column nodes to capture
content at different granularities. Then the tabular graph is input to
a Graph Transformer model that can capture both table cell content
and the layout structures. To enhance the robustness and gener-
alizability of the model, we further incorporate a self-supervised
pre-training task based on graph-context matching. Experimental
results on two benchmarks show that our method leads to sig-
nificant improvements over the current state-of-the-art systems.
Further experiments demonstrate promising performance of our
method on cross-dataset generalization, and enhanced capability
of handling complex tables and fulfilling diverse query intents.1

CCS CONCEPTS
• Information systems → Retrieval models and ranking.

KEYWORDS
Table retrieval; Semantic retrieval; Graph Transformer; Pre-training
ACM Reference Format:
Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, Pedro Szekely. 2021.
Retrieving Complex Tables with Multi-Granular Graph Representation
Learning. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’21), July

1Code and data are available at https://github.com/FeiWang96/GTR

This work is licensed under a Creative Commons Attribution NonCommercial-
ShareAlike International 4.0 License.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8037-9/21/07.
https://doi.org/10.1145/3404835.3462909

11–15, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3404835.3462909

1 INTRODUCTION
Web tables are rich sources of semi-structured knowledge that ben-
efit a wide range of applications. For example, Wikipedia contains
millions of high-quality tables that support various knowledge-
driven tasks, such as table-based question answering [41], fact
verification [12] and table-to-text generation [35]. Additionally,
tables are ubiquitous in scientific literature and financial reports
and have inspired research efforts on table profiling [37], table-text
grounding [30], tabular semantic parsing [19], etc.

As an important component of Web information, tables are pre-
sented as direct results to Web queries in search engines [3]. Tra-
ditional formal methods for information retrieval from databases
(e.g. SQL, QBE [70] and QUEL [51]) and formal query generation
methods (e.g. text-to-SQL [61, 63]) do not provide a flexible way to
support information retrieval from Web tables with varied struc-
tures. Therefore, the task of natural language table retrieval (NLTR)
[66] has been proposed, offering more flexibility for directly search-
ing semantically relevant tables based on search queries described
in natural language. Moreover, NLTR is a key building block for
tasks that require synthesizing knowledge from tables, such as
table-based reading comprehension [59], open fact verification [46],
and open domain question answering [10, 13]. While Web tables
are beneficial to many downstream tasks, a key issue in those tasks
in real-world scenarios lies in the difficulty of efficiently collecting
relevant tables from a large table corpus. NLTR can then be used to
identify candidate tables for those tasks.

A common challenge of NLTR lies in the fact that tables consist
of both structured table cells and unstructured contextual infor-
mation (e.g. captions). A simple method to deal with both types of
information is treating tables as plain text [6, 7, 43]. In this way, the
problem is reduced to document retrieval, but the characteristics
of different types of information, especially the semantic depen-
dency among table cells is ignored. Text in each cell of a table
contains limited knowledge and are sometimes meaningless with-
out dependencies. For example, in Fig. 1(c), numerical cells do not
provide meaningful knowledge unless aligned with attributes in
row and column headers. As an attempt to capture the information
in different substructures of a table, Chen et al. [15] designed an
embedding-based feature selection technique to select from each
table the rows, columns and cells that are relevant to a query. Then
they applied the pre-trained language model BERT [17] to encode
selected table content. Shraga et al. [49] treated different types of
information as multimodal objects and used recurrent neural net-
works (RNN) or convolutional neural networks (CNN) to encode

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1472

https://github.com/FeiWang96/GTR
https://doi.org/10.1145/3404835.3462909
https://doi.org/10.1145/3404835.3462909
https://creativecommons.org/licenses/by-nc-sa/4.0/

(a) Relational table (b) Entity table (c) Matrix table (d) Nested table

Figure 1: Example snippets of tables with diverse layout structures.

each of them. Sun et al. [53] utilized attention mechanism to select
cell embeddings over each row and each column. The approaches
in prior studies have offered decent performance in intrinsic evalu-
ation settings [15, 53, 66]. However, they are still quite distant from
a generalizable solution to the NLTR problem.

To effectively address the NLTR problem, a learning-based sys-
tem needs to tackle three aspects of generalization issues, which are
however overlooked by prior approaches. First, as shown in Fig. 1,
table cells are organized in diverse layouts to express the complex
dependencies between cells. For example, we find that around 63.8%
of WikiTables [66] come with nested structures of merged cells.
Failing to consider these complex layout structures prevents the ex-
traction and synthesizing of semantic knowledge from these tables.
Second, natural language queries may have varied intents, referring
to various granularities of content stored in different subunits of
a table, such as cells, rows and columns. For example, the table
in Figure 2(a) is relevant to queries for “taxable wages” at table-
level, “dependent allowance” at row-level, and “yearly aggregates”
at column-level. Sun et al. [53] analyzed a subset of the WebQuery-
Tables dataset and found that about 24.5% queries are asking for
information in specific subtable units while about 69.5% are asking
for a whole table. Third, tables and queries from different datasets
can possess dissimilar content, therefore requiring a generally ap-
plicable retrieval model to be adaptive to different datasets. Some
work [15, 53] collects datasets from different sources and perform
intrinsic evaluation on each of them. Nonetheless, prior methods
fall short under cross-dataset evaluation [14], i.e. training on one
dataset and testing on another dataset.

To this end, this paper proposes a novel table retrieval frame-
work, namely Graph-based Table Retrieval (GTR), to tackle the
generalization issues (Sect. 3). GTR leverages state-of-the-art graph
representation learning techniques to capture both content and
layout structures of complex tables. Specifically, GTR incorporates
a process to convert layout structures to tabular graphs, with cell
nodes, row nodes, and column nodes to capture tabular informa-
tion in different subunits. A variant of Graph Transformer [34] is
then applied for automatic feature extraction from tabular content
(Sect. 3.2), providing a structure-aware and multi-granular semantic
representation for each unit. Then given a query, the framework
uses two matching modules to measure the relevance scores based
on both cells and contextual information of tables (Sect. 3.3). To
further improve the adaptivity of GTR, we design a pre-training
process to enhance the robustness of the query-graph matching
module (Sect. 3.4). Experimental results on two benchmark datasets
show that our method achieves significant improvements over prior
state-of-the-art methods, even without pre-training (Sect. 4.2). In
particular, our method outperforms the best-performing baseline
on both datasets by 8.27% and 4.97% in terms of MAP. Further ex-
perimentation (Sect. 4.3) also demonstrates that the GTR framework

exhibits promising cross-dataset generalization performance, and
shows stronger ability to handle complex tables and diverse query
intents than existing methods.

In summary, this paper makes three major contributions: (1) a
novel graph representation strategy captures complex layouts of ta-
bles and preserves structural dependencies between table units; (2)
a query-graph matching process with a pre-trained Graph Trans-
former provides robust characterization of tables and supports
multi-granular feature extraction for varied query intents; (3) a
comprehensive set of experimentation shows the superior perfor-
mance of the proposed method based on NLTR benchmarks and
verifies the effectiveness in terms of cross-dataset generalization,
complex table representation and query intent adaptation.

2 RELATEDWORK
We review two relevant research topics. Both topics have a large
body of work, for which we provide a selected summary.

2.1 Natural Language Table Retrieval
Earlier approaches for NLTR [6, 38, 43] treated tabular data as
plain text and used BM25-style [45] methods to retrieve tables
in the same way as document retrieval. Following this line, later
work attempted to improve via better feature engineering, which
involved handcrafted statistical and semantic features [5, 7], or
utilized lexical embeddings [65, 66]. These studies provided feasible
solutions to NLTR. However, the extracted features used in these
approaches have limited coverage on queries and tabular content,
as they focused on specific facets. Moreover, some strong features
(e.g. entities and categorical features [66]) were only available in
specific scenarios, limiting their generalizability.

Recent work focused on neural network approaches [15, 49, 53,
67]. Sun et al. [53] proposed query-specific attention mechanisms
to aggregate table cell embeddings, which provided a flexible way
to induce the relevance between a query and different parts of a
table with softmax classifiers. Through this direction, Chen et al.
[15] designed an embedding-based feature selection technique to
select most relevant content from cells, rows and columns of each
table, where BERT [17] was used to encode the concatenated text
sequence of selected table content. Chen et al. [15] also observed
that combining neural networkmethods and feature-basedmethods
achieved further improvements. Shraga et al. [49] treated different
facets of a table, including descriptions, schemas, rows and columns
as different data modalities, and incorporated a multi-channel neu-
ral network to capture all modalities to be retrieved. The network
was trained with both query-independent and query-dependent
objectives. Zhang et al. [67] constructed a graph for the query, and
headers, captions and cells of a table, and incorporated a graph
convolutional network (GCN) [32] based classifier to predict the

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1473

Figure 2: Multi-granular query intents and the tabular graph construction process for a table with complex layout.

query-content relevance scores. In addition, there have been re-
search efforts on cascade re-ranking based on the results of single
[50] or multiple [48] table retrieval methods.

The proposed table retrieval approach in this paper is connected
to neural network approaches. The main difference lies in two
perspectives: (1) our approach offers flexible representations of
tables suitable for characterizing diverse and complex table layouts;
(2) it better captures semantic information of a table in various
subunits, hence can handle situations where queries are intended
for different granularities of content.

2.2 Pre-training on Semi-structured Data
Some recent efforts have been made to pre-train graph neural net-
works for modeling structured or semi-structured data. Previous
studies proposed node-level and graph-level pre-training tasks.
Node-level pre-training methods, including Variational Graph Auto-
Encoders [31], GraphSAGE [23], Graph Infomax [56], and GPT-
GNN [27], aimed to support downstream tasks that relied on node
representations. Graph-level pre-training methods, such as Info-
Graph [52], sought to support inductive representation learning
for global prediction tasks on graphs or subgraphs. In addition, Hu
et al. [26] combined both node-level and graph-level pre-training.
Our pre-training process is connected to the supervised graph-
level property prediction by Hu et al. [26], but we match the graph
representations to textual representations.

Fewer works have attempted pre-training on tabular data. Early
work [20, 22] pre-trained embeddings for words or cells in tabular
data according to co-occurrence. Inspired by the recent success of
BERT [17] in language modeling, researchers extended BERT for
encoding sequences extracted from tables and achieved state-of-
the-art performance on semantic parsing over relational tables. Yin
et al. [64] proposed TaBERT, which was pre-trained by recovering
masked words, masked cells, and names and data types of masked
columns. Herzig et al. [24] proposed TAPAS, which used a masked
language model objective as BERT, but applied whole word and
whole cell masking. Those aforementioned techniques however,
do not capture the diverse and complex layout structures of tables,
nor do they support a way of multi-granular aggregation of table
information, which are both essential to tackling the NLTR task.

3 METHOD
In this section, we first provide a formal definition of the NLTR
task (Sect. 3.1), and then introduce the architectures of the main

components in our framework (Sections 3.2 and 3.3). This is fol-
lowed by the technical details of training, pre-training (Sect. 3.4)
and inference (Sect. 3.5) processes.

3.1 Preliminaries

Task Definition. Given a natural language search query 𝑞 ∈ Q
and a set of tables T𝑞 = {𝑇1,𝑇2, ...,𝑇𝑝 }, the goal of the NLTR task is
to rank tables from T𝑞 according to how likely 𝑞 can be satisfied by
the information in each table. The main body of a table contains two
types of content, i.e. table cells and contextual information. Table
cells can contain both header cells that describe attributes or names,
and basic data cells2 [67]. Different from previous works, we do
not make the assumption that these table cells necessarily form a
matrix-like layout [15, 49]. Meanwhile, tables are associated with
contextual information (e.g. captions and footnotes), which have also
been used as side information to characterize a table in previous
works [15, 49, 67]. Following the aforementioned works, our work
also leverages these two components, i.e. table cells and contextual
information, to characterize a table. Fig. 2(a) shows an example.
The caption “Taxing wages in the United States” is the contextual
information and the main content is presented in several table cells.

Method Overview. The overall architecture of GTR is given in
Fig. 3. Specifically, the framework consists of three model compo-
nents: (1) a query-graph matching module captures the cells of a
table with a multi-granular graph representation (Sect. 3.2), and
estimates how relevant the cell content is based on such a represen-
tation (Sect. 3.3); (2) a query-context matching module assesses the
relevance of a table to a query based on the contextual information
associated with the table (Sect. 3.3); and (3) a ranking module that
combines the outputs of two aforementioned matching modules
and calculates the relevance score for each candidate query-table
pair (Sect. 3.3). To further explore the potential of our framework,
especially the generalizability of the query-graph matching module,
we also incorporate a novel pre-training process (Sect. 3.4).

3.2 Graph Representation of Tables

Tabular Graph Construction. To effectively characterize a table
with arbitrary layout, the first step is to transform the table into
a multi-granular graph representation. In detail, a table 𝑇 can be
split into a set of units. Each unit refers to an individual cell, a row
or a column. Units are interconnected in different ways depending

2Sometimes table titles and footnotes also appear as (merged) cells.

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1474

Figure 3: The overall architecture of the GTR framework.Vector Combination thereof refers to operations in Sect. 3.3. Numbered
markers correspond to the components described in Method Overview (Sect. 3.1).

on the table layout, and each unit can contain different types of
information. This characteristic of tables is similar to that of graphs.
In particular, each table unit can be treated as a node 𝑣𝑖 ∈ 𝑉 in
a graph 𝐺 = (𝑉 , 𝐸), and the connection between two table units
becomes an edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 between their corresponding
nodes. In this paper, we consider two kinds of connections between
table units: between adjacent cells; and between a unit and its
subunit, such as a row and a cell in this row.

Fig. 2 shows an example of a table and its tabular graph. Suppose
we have a table about taxing wages. The table has 11 cells in total
where four cells are merged cells. In the corresponding tabular
graph, each cell has an associated node. In addition, we have global
nodes that capture the information of each row and column. Be-
tween each pair of adjacent cell nodes, we add a bidirectional edge.
Every global node has a unidirectional edge sourced from each
constituent cell node. These edges allow global nodes to aggregate
information from the respective cells in the row or column.

Tabular Graph Transformer. Once a table is converted to a tab-
ular graph, we use a variant of Graph Transformer [34] to charac-
terize both cell content and layout structures. In detail, this process
starts with initial representationsV0 = {v0

𝑖
} of node features, which

are obtained using a pre-trained text encoder to encode the table
unit content referring to each node3. We compare different text
encoders in Sect. 4.4. These encodings along with the tabular graph
introduced in the previous section are used as inputs to a Graph
Transformer. Every 𝑙-th layer of the Graph Transformer thereof
incorporates a multi-head self-attention layer with residual con-
nection, a feedforward neural network layer (𝐹𝐹𝑁𝑁) and layer
normalization (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚) [1]:

v𝑙+1𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝐹𝑁𝑁 (𝜎 (W𝑙
𝑔v

𝑙
𝑖 +

𝐻��������
ℎ=1

∑
𝑗 ∈N𝑖

𝛼𝑙ℎ𝑖 𝑗 W
𝑙ℎ
𝑔 v𝑙𝑗))),

where 𝜎 denotes the Leaky Rectified Linear Unit (LeakyReLU) [40],
W𝑙

𝑔 is a trainable weight matrix that transforms v𝑙
𝑖
to the same

size of the output of multi-head self-attention layer,
���� denotes the

concatenation operation over 𝐻 attention heads, N𝑖 denotes the

3For global nodes, we average text embeddings of constituent cells as node features.

neighborhood of node 𝑣𝑖 in 𝐺 , and 𝛼𝑙ℎ
𝑖 𝑗

is the attention4 score of
node 𝑣 𝑗 to node 𝑣𝑖 in the ℎ-th head of the 𝑙-th layer:

𝛼𝑙ℎ𝑖 𝑗 =
𝑒𝑥𝑝 (𝑎𝑙ℎ

𝑖 𝑗
)∑

𝑗 ′∈N𝑖
𝑒𝑥𝑝 (𝑎𝑙ℎ

𝑖 𝑗 ′)
,

𝑎𝑙ℎ𝑖 𝑗 = 𝜎 (w𝑇
𝑙ℎ
[W𝑙ℎ

𝑎 v𝑙𝑖
���� W𝑙ℎ

𝑎 v𝑙𝑗]).

We stack 𝐿 layers of Graph Transformer to allow tabular deatures to
pass through the graph structure. Note that both local neighborhood
information of cell nodes and global information of row and column
nodes are captured through message passing.

3.3 Query-Table Matching

Query-Graph Matching. After obtaining the embedding repre-
sentation of tabular content, we then need to match the tabular
graph with the query. This process is completed by the query-graph
matching module. Given representations of individual nodes in the
graph, we first apply a linear transformation and layer normaliza-
tion to these representations:

v𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(W1v𝐿𝑖 + 𝑏1) .

Meanwhile, a sentence encoder is used to encode the query (imple-
mentation details see Sect. 4.1). Each encoded node representation
v𝑖 ∈ V and the query representation q are concatenated together
with their element-wise subtraction and Hadamard product:

ĥ𝑖 = [v𝑖
���� q ���� v𝑖 − q

���� v𝑖 ◦ q]
Note that this is shown to be a comprehensive way to model em-
bedding interactions in previous works [58, 69]. Then another non-
linear transformation with tanh5 activation function is applied to
produce hidden representations:

h𝑖 = 𝑇𝑎𝑛ℎ(W2ĥ𝑖 + 𝑏2).

4We use additive attention mechanism [2]. Other mechanisms, such as dot-product
attention [39], can also be applied, though we observe similar performance.
5The sequence output of BERT is activated by tanh function, which keeps the outputs
of query-context matching and query-graph matching modules at the same scale.

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1475

Finally, we aggregate the hidden representations of all nodes with
a max-pooling operation, where |𝑉 | is the number of nodes in 𝐺 :

h𝑞𝑑 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(h1, h2, ..., h |𝑉 |).
Note that the design of this module is motivated by the need for ful-
filling varied queried intents in NLTR. The representations of cell,
row and column nodes encoded by Graph Transformer naturally
summarize on various subunits of the table as potential references
for different queries. The pooling operator over nodes is for select-
ing summarized content that is most relevant to a query.

Query-Context Matching. Contextual information associated
with tables can provide side information indicating the content
of tables. To capture such side information h𝑞𝑐 , we use a query-
context matching module. Specifically, query-context matching can
be seen as short-short or long-short text matching regarding to the
length of context. Successful text matching models, such as BERT,
can be used as the backbone of this module.

Learning Objective. The final query-table matching representa-
tion h𝑞𝑡 = [h𝑞𝑑

���� h𝑞𝑐] is then fed to a multi-layer perceptron (MLP)
to calculate the relevance score 𝑠𝑘 . Recall that the goal of the NLTR
task is to rank a collection of tables T𝑞 = {𝑇1,𝑇2, ...,𝑇𝑝 } according
to their relevance scores to query 𝑞 ∈ Q. Since we have the rele-
vance score 𝑠𝑘 for each table𝑇𝑘 , any ranking objectives can be used
here. Following Chen et al. [15], the default setting approximates
point-wise ranking with a mean square error (MSE) loss:

𝑀𝑆𝐸 =
1
|Q|

∑
𝑞∈Q

1
|T𝑞 |

|T𝑞 |∑
𝑘=1

(𝑠𝑘 − 𝑦𝑘)2,

where 𝑦𝑘 is the gold label (relevance score) of table 𝑡𝑘 . Specifically,
in the scenario where each query has only one relevant table, using
the negative loglikelihood objective can achieve better performance
[53]. Following Sun et al. [53], we use negative loglikelihood (NLL)
as the loss function for this specific situation:

𝑁𝐿𝐿 = − 1
|Q|

∑
𝑞∈Q

log(
exp(𝑠

𝑘
)∑ |T𝑞 |

𝑘=1 exp(𝑠𝑘)
),

where 𝑘 is the index of the only relevant table to each query.

3.4 Pre-training
In order to support robust characterization of tables, we design a
self-supervised pre-training task, following the principles suggested
by Chang et al. [8]: (1) the pre-training task should capture self-
supervision signals that are relevant to the downstream task, so
that the pre-trained model can acquire essential characteristics for
solving the downstream task; and (2) the pre-training task should
be cost-efficient in terms of pre-training data, ideally relying on
free or self-generated labels. Considering that a query and the
contextual information of a relevant table contain semantically
related information, we use the contextual information as free-
labels during pre-training.

Graph-Context Matching. Specifically, we reuse the architecture
of the query-graph matching module. Different from the original
query-graph matching process, the pre-training process treats the
contextual information of tables as queries and performs graph-
context matching. During pre-training, for each table 𝑇 with the

contextual information 𝑐 , we randomly select the contextual infor-
mation 𝑐 ′ of another table. We refer 𝑐 as a positive context, and 𝑐 ′
as a negative context. The “context” here provides the same func-
tionality as the “query” in Sect. 3.3. The objective of pre-training is
to make 𝑇 more relevant to 𝑐 than 𝑐 ′. Suppose the relevance scores
from the query-graph matching module for 𝑐 and 𝑐 ′, are 𝑠 and 𝑠 ′,
we also apply MSE as the loss function such that the ground-truth
scores for 𝑐 and 𝑐 ′ are 1 and 0, respectively.

3.5 Inference
During inference, GTR retrieves tables based on both the table cells
and contextual information. Fig. 3 depicts the whole pipeline. Given
a query, for each candidate table that has been converted to its tabu-
lar graph, both query-graph matching and query-context matching
modules yield the combined representation of the query and corre-
sponding information of the table. As described above, the query-
graph matching module has performed a pooling operation to filter
the relevant information in the tabular graph. Then, representations
from both modules are further combined for an estimation of rele-
vance score 𝑠𝑘 = 𝑀𝐿𝑃 (h𝑞𝑡). For each query, we sort all candidate
tables directly by the estimated relevance scores.

4 EXPERIMENT
In this section, we conduct experiments based on two benchmark
datasets (Sect. 4.1) and compare the performance of GTR against a
series of recent baselines (Sect. 4.2). We also provide quantitative
analysis on the generalizability of our method (Sect. 4.3), and con-
duct detailed ablation studies (Sect. 4.4) and case studies (Sect. 4.5)
to help understand the contribution of different model components.

4.1 Experimental Setup

Datasets.We conduct experiments on two benchmark datasets, i.e.
WikiTables [66] and WebQueryTable [53]. The relevant query-table
pairs of these two datasets are collected from different sources.
More details and statistics of the datasets are described as follows:

• WikiTables: WikiTables is a widely-used dataset for the NLTR
task. It contains 60 queries that are contributed by two previ-
ous studies [6, 57]. 3,120 candidate tables were extracted from
Wikipedia. All candidate tables were labeled by annotators with
one of three relevance scores: 0 (irrelevant), 1 (relevant), and 2
(highly relevant). Each table is associated with contextual infor-
mation including a caption, Wikipedia’s page title and section ti-
tle. We analyzed the cell adjacency of these tables and discovered
that 1,886 of them came with nested layout structures involving
merged cells. Following previous works [15, 66], we run 5-fold
cross-validation on this dataset.

• WebQueryTable: The WebQueryTable dataset contains 21,113
queries collected from search logs of a commercial search engine
and 273,816 tables. For each query, one relevant table was ob-
tained from the top ranked Web page of the same search engine
after manual evaluation. Captions of tables are also given in this
dataset as contextual information. We use the originally released
training, validation and test set splits [53] for evaluation.

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1476

Table 1: Retrieval performance onWikiTables. The best performing method in each column is boldfaced, and the second best
method is underscored. Baselines are organized into (1) unsupervised, (2) feature engineering and (3) end-to-end groups.

Method NDCG@5 NDCG@10 NDCG@15 NDCG@20 MAP

BM25 0.3196 0.3377 0.3732 0.4045 0.4260

WebTable 0.2980 0.3150 0.3486 0.3922 -
SDR 0.4573 0.4841 0.5195 0.5534 -
MDR 0.5021 0.5116 0.5451 0.5761 -
Tab-Lasso 0.5161 0.5018 0.5330 0.5481 -
LTR 0.5910 0.5712 0.5858 0.6041 0.5615

TaBERT 0.5926 0.6108 0.6451 0.6668 0.6326
BERT4TR 0.6052 0.6171 0.6386 0.6689 0.6191

GTR (w/o pre-training) 0.6554 0.6747 0.6978 0.7211 0.6665
GTR 0.6671 0.6856 0.7065 0.7272 0.6859

Table 2: Retrieval performance on WebQueryTable. P@1 is
not reported by the BERT4TR paper.

Method P@1 MAP

BM25 0.4712 0.5823

MDF 0.4779 0.6102

MNN 0.4902 0.6194
TaBERT 0.5067 0.6338
BERT4TR - 0.7104

GTR (w/o pre-training) 0.6257 0.7369
GTR 0.6358 0.7457

Baselines. We compare our framework GTR with the following 10
strong baseline methods6.
• BM25 [45]: Okapi BM25 is an unsupervised method using token-
matching with TF-IDF [44] weights as the scoring function.

• WebTable [7]: WebTable is a method based on linear regression
using hand-crafted features.

• SDR [6]: Single-field Document Ranking (SDR) treats a table as a
regular document, and uses a symmetric conditional probability
model with Dirichlet smoothing to capture query-table relevance.

• MDR [43]: Multi-field Document Ranking (MDR) extends SDR
by treating each table as multiple separated fields of text. Each
field corresponds to page titles, table section titles, table captions,
table body, or table headings, respectively. MDR also uses coor-
dinate ascent algorithm [62] to learn the aggregation weights.

• Tab-Lasso [5]: Tab-Lasso is a Lasso [54] model with coordinate
ascent, taking well-designed hand-crafted features as input.

• LTR [66]: Lexical Table Retrieval (LTR) is a strong non-neural
baseline, which employs point-wise regression using Random
Forest [25] with features from WebTable [7] and Tab-Lasso [5].

• MDF [53]: Matching with Designed Features (MDF) matches
queries and tables based on lexical similarity using IDF scores,
phrasal similarity using phrase dictionary tables [33], and sen-
tential similarity using the CDSSM [47] model, respectively.

6We did not compare with STR [66] which used addtional entity and categorical
information. Also, MTR [49] was reported in a different experimental setting, but its
implementation had not been released by the time this paper was written.

• MNN [53]: Matching with Neural Networks (MNN) is a method
that uses bi-directional gated recurrent unit (GRU) [16] to encode
queries and captions, and applies query-specific attention mech-
anisms to aggregate cell embeddings to represent table units.

• BERT4TR [15]: BERT for Table Retrieval (BERT4TR) is the pre-
vious state-of-the-art method that applies the pre-trained lan-
guagemodel BERT [17] to encode flattened tables. An embedding-
based selection process is first utilized to select the most relevant
rows from tables with respect to queries. Then the query, con-
textual information of a table and selected tabular content is
flattened as a sequence and encoded by BERT, on top of which
an MLP is stacked to compute the relevance score.

• TaBERT [64]: TaBERT is a more recently released language
model that is pre-trained on a large corpus of 26million tables and
their English contexts. It has been previously applied to semantic
parsing on tables and offered state-of-the-art performance. We
apply this strong table representation learning method for NLTR.
Similar to BERT4TR, we also stack an MLP scorer to calculate
the query-table relevance scores.

For WebTable, SDR, MDR, Tab-Lasso and LTR, we use the imple-
mentation from Zhang and Balog [66] 7. The results for BM25, MDF,
MNN and BERT4TR on WebQueryTable dataset are obtained from
their original papers, where experiments are conducted using the
same data split. For BERT4TR on WikiTables dataset and TaBERT
on both datasets, we use the original implementation, configuration
and preprocessing steps released by the authors.

Evaluation Metrics. Considering the different annotation strate-
gies of the two datasets, we adopt different groups of metrics to
evaluate the retrieval performance on each dataset, as to be consis-
tent with prior studies. On WikiTables, following previous works
[15, 66], we report Mean Average Precision (MAP) and Normal-
ized Discounted Cumulative Gain (NDCG@𝑘) with cut-off points
𝑘 = {5, 10, 15, 20}. On WebQueryTable, we report MAP and Pre-
cision at 1 (P@1) following Sun et al. [53]. Specifically, MAP and
NDCG metrics are calculated using the TREC evaluation tool8.

7Some baseline results in Tab. 1 may be different from those reported in previous
works due to different setups of cross-validation.
8https://github.com/usnistgov/trec_eval

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1477

https://github.com/usnistgov/trec_eval

(a) Results of cross-dataset evaluation. (b) Results by query intents. (c) Results on complex tables.

Figure 4: Generalizability analysis results.

Implementation Details. For the default version of GTR, we use
BERT as the query-context matching module and FastText [28] as
the text encoder for query-graph matching module (see Sect. 4.4
for ablation on text encoders). In query-graph matching module,
we use four layers of Graph Transformer (𝐿 = 4) with four self-
attention heads (𝐻 = 4). The dimensionality of hidden states is set
to 300. In query-context matching module, multiple text sequences
from the query and context are concatenated and fed to BERT.
Following Devlin et al. [17], we add a [CLS] token at the beginning
of the input sequence, and separate query and context with a [SEP]
token. Different segment embeddings are assigned to distinguish
query from context. We use the final output of the first token [CLS]
as the hidden state of query-context matching. As described in
Sect. 3.3, the learning objective is set to be MSE on WikiTables
where multiple relevant tables coexist for each query, and that is
set to a NLL loss on WebQueryTable where each query has only
one relevant table.

Both pre-training and the main training process use an Adam
optimizer with learning rate set as 0.0001. Pre-training of the query-
graph matching module uses tables from both WikiTables and
WebQueryTable datasets. It is conducted for 20 epochs with a batch
size of 16, so as to fit into one RTX 2080 GPU. The main training
process on both datasets takes 5 epochs with a linear learning rate
scheduler with warmup steps. The training configurations on both
datasets are slightly different, as being limited by the GPU memory.
On the WikiTables dataset, we use batch size of 16 and warmup
steps of 100. On the WebQueryTable dataset, we use batch size of 4
and warmup steps of 1000. Trainable parameters other than text
encoders are initialized using the Xavier initializer [21]. Dropout
rate of 0.1 is applied to each Graph Transformer layer and before
the final MLP. The negative slope of LeakyReLU is set as 0.2. We
use Pytorch [42] and DGL [60] to implement our framework.

4.2 Main Results
The main results presented here are under the intrinsic evaluation
protocol following the design of the two NLTR benchmarks.

As reported in Tab. 1 and Tab. 2, among the baseline methods, the
pre-trained Transformer language model based BERT4TR demon-
strates state-of-the-art performance over other baselines. The rea-
son is that that pre-trained language models more comprehensively
capture the semantic information of table cell content and context
information, in comparison to a number of other baselines based on
explicit features or static embeddings. In particular, though TaBERT

follows is similar to BERT4TR, it offers a less performance. We hy-
pothesize that since TaBERT is designed for semantic parsing tasks
where the focus is to capture column relations, it does not neces-
sarily support well summarizing table content and inferring the
query-table affinity.

We observe that our method, even without pre-training, outper-
forms BERT4TR and TaBERT with at least relative improvements
of 8.29% in terms of NDCG@5, 9.34% in terms of NDCG@10, 8.17%
in terms of NDCG@15, 7.80% in terms of NDCG@20 and 5.36% in
terms of MAP, on the WikiTables dataset. It is noteworthy that,
both BERT4TR and TaBERT are Transformer-based architectures
that flatten table cells to sequences. This strategy of representation
necessarily discards the dependencies between subtable content
that are modeled in the table layouts. The graph representation and
coupled tabular Graph Transformer in our framework preserve the
original structures of table content, and encapsulate features of table
cells in different granularities. The experimental results verify our
hypothesis that structure-aware representations andmulti-granular
information of tables are conducive to general purpose NLTR.

Pre-training the query-graph matching module further leads to
at least a relative improvement of 1.78% in terms of NDCG@5, and
that of 2.91% in terms of MAP. This is attributed to that the query-
graph matching module acquires more robust characteristics of
tables during the pre-training process, hence particularly benefits
the training that does not involve lots of data.

The evaluation on theWebQueryTable dataset supports the same
conclusion. GTR outperforms BERT4TR with a relative increase of
MAP by 3.73% without pre-training and 4.97% with pre-training,
with more improvement in comparison to other baselines. The two
datasets have different annotation strategies and sources of relevant
query-table pairs. These results indicate that GTR adapts well to
different scenarios of NLTR.

4.3 Generalizability Analysis
We further present several aspects of generalizability experiments,
with detailed analysis on cross-dataset generalization, reactions to
query intents and performance on complex tables. In these exper-
iments, we compare GTR with the two best-performing baselines
BERT4TR and TaBERT.

Cross-dataset Evaluation. In the first experiment, we compare
NLTR methods in an inductive evaluation setting, seeking to ex-
amine how well they can transfer knowledge to retrieve tables
across datasets. Specifically, we train GTR and the two baselines on

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1478

Table 3: Ablation study on framework components. Removing Tabular Graph removes the entire query-graph matching mod-
ule.Removing Edges keeps nodes but removes all edges in the tabular graph.Mult-headGAT uses amulti-headGraphAttention
Network as the encoder. Removing Row and Col Nodes removes row and column nodes. Node Initialization with BERT replaces
FastText with BERT as the cell text encoder. ↓marks a significant drop of a metric by at least 4% relatively.

Setting NDCG@5 NDCG@10 NDCG@15 NDCG@20 MAP

Default 0.6554 0.6747 0.6978 0.7211 0.6665

- Removing Tabular Graph 0.5979 ↓ 0.6118 ↓ 0.6395 ↓ 0.6606 ↓ 0.6231 ↓
- Removing Edges 0.6190 ↓ 0.6438 ↓ 0.6669 ↓ 0.6956 0.6513
- Multi-head GAT 0.6458 0.6553 0.6728 0.6977 0.6546

- Removing Row and Col Nodes 0.6403 0.6566 0.6704 0.6922 ↓ 0.6494

- Node Initialization with BERT 0.6472 0.6417 ↓ 0.6652 ↓ 0.6967 0.6472

a subset of query-table pairs from WebQueryTables, and evaluate
on WikiTables. Note that the relevant tables in the two datasets
are collected from different sources. In addition, to study the data
efficiency of training the models, we vary the size of the training
set to be 1,500, 3,000, and 6,000, which are approximately half, equal
and double of the size of the test set, respectively.

The results are accordingly presented in Fig. 4(a), which indi-
cate that our method yields better performance than BERT4TR
and TaBERT on each setting of the training data. In particular, GTR
exhibits better generalization performance even with half of the
training data (by offering 0.6157 in terms of NDCG@20), in compar-
ison to BERT4TR and TaBERT that are trained with full data (which
achieve 0.5859 and 0.6060 in terms of NDCG@20, respectively). We
also observe that when the number of training samples decreases,
the performance of the pervious state-of-the-art system BERT4TR
drops more drastically, while both TaBERT and GTR are relatively
more stable. Moreover, when the training set is small (1,500), the
performance of TaBERT is close to GTR and is much better than
BERT4TR. We believe this is because TaBERT has learned more
adaptive table encoding than BERT by pre-training on large ta-
ble corpus, hence offering better cross-dataset generalization than
BERT4TR when without sufficient fine-tuning data. However, it
still drastically fall behind GTR.

Meanwhile, we observe noticeable performance drop by our
method when pre-training is disabled, especially in cases with less
training data. This indicates the effectiveness of pre-training to
improve cross-dataset generalization. Though even without pre-
training, GTR still consistently outperforms the two strong baselines.

Performance by Query Intents. In the second experiment, we
show how well GTR and both baselines react to query intents on
different granularities of content. Following Sun et al. [53], we
split queries from the WikiTables dataset into two main groups,
i.e. general queries and specific queries, based on their intents. A
general query usually refers to a whole table involving several
aspects of objects while a specific query usually asks about a specific
local aspect of the table in a row, a column or individual cells. For
example, “world interest rates table” refers to a general query and
“2008 Olympics gold medal winners” is a more specific query.

Fig. 4(b) presents the results. For both general and specific query
intents, GTR significantly outperforms both BERT4TR and TaBERT.
The reason is mainly attributed to that our graph representation

strategy, especially the incorporation of multi-granular node en-
coding, naturally provides a multi-granular content summarization
to fulfill query intents of different specificities. Meanwhile, the
two strong baseline methods perform differently on reacting to the
query intents. Specifically, TaBERT performs slightly better than
BERT4TR on general queries, but being worse on specific queries.
This is most likely due to the difference in the table unit selection
processes of these two methods. Both methods select highly rele-
vant table units according to a given query as model inputs, but
TaBERT creates synthetic rows by regrouping cell content from
each column. Although this process remains the most relevant
table content to queries, it may hinder the model to capture the
original semantics of table units. We also observe that our method
benefits much from pre-training to deal with general queries. We
believe this benefits from contextual information (e.g. captions) in
the pre-training task of graph-context matching (Sect. 3.4), where
the contextual information serves as general descriptions of tables.

Performance on Complex Tables. In the third experiment, we
evaluate how different methods are capable of handling complex ta-
bles. To do so, we preserve only 1,886 tables with nested structures
in cross-validation. Results in Fig. 4(c) show that GTR, with or with-
out pre-training, notably outperforms both TaBERT and BERT4TR
under this setting. It verifies that our graph representation strategy
is better at capturing complex table layouts than Transformer lan-
guage model based methods, as our method captures the essential
structural layout information rather than flattening table cells into
a sequence. Interestingly, we observe that TaBERT performs better
than BERT4TR on retrieving complex tables, which is just the op-
posite when retrieving from the whole table corpus (Tab. 1). Mean-
while, GTR also performs much better with pre-training, indicating
pre-training task to be beneficial to complex table representation.

According to the experiments, our method is capable of effec-
tively transferring knowledge cross datasets. In addition, the graph
representation strategy allows for capturing multi-granular infor-
mation to fulfill both general and specific intents.

4.4 Ablation Study
To further help understand the contribution of each incorporated
model component, we hereby conduct several aspects of ablation
studies based on WikiTables. The discussed results are in Tab. 3.

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1479

Figure 5: The heat-map of pooling operation in query-graph matching module by index selection frequency on a retrieved
table for the query “asian countries currency”. Row nodes and column nodes are shown as the first column and the first row
in the figure, respectively. Nodes with higher index selection frequency are displayed in darker colors.

Table Graph Reprepresentation. We first examine the effective-
ness of the graph representation as well as the tabular Graph Trans-
former. As expected, the performance drastically drops when ig-
noring the information in table cells and ignoring the table layouts,
leading to a relative drop of NDCG@5 by 8.77%. Besides, NDCG@5
decreases by relatively 5.56% when each table unit is captured in-
dependently (i.e., removing edges). The results indicate that both
information inside each cell and dependencies among cells are
important for comprehensive table understanding. Lastly, using
multi-head Graph Attention Network (GAT) [55] instead of Graph
Transformer leads to relatively 1.46% of drop in NDCG@5.

Row andColumnNodes.When removing row and column nodes
from tabular graphs, the performance is lessened by 2.30% in terms
of NDCG@5, and by 4.00% in terms of NDCG@20 relatively. Pre-
sumably this is because Graph Transformer with cell nodes alone
cannot effectively capture row-wise and column-wise information.
Thus, it is essential to use row nodes and column nodes for that
level of coarse-grained information aggregation.

Text Encoders. We test if node initialization can benefit from
a deep contextualized embedding. Interestingly, we observe that
initializing node features by encoding cell text with BERT [17] per-
forms worse than with FastText [28]. The NDCG@5 drops by 1.25%
and the NDCG@20 drops by 3.38%, relatively. This is understand-
able, since each cell content is a standalone short piece of text that
does not necessarily benefit from contextualized text embedding by
BERT. On the contrary, the static embedding by FastText support
with more stable semantic representation to jump-start the node
features based on the short cell content. This is in line with the
observation where static embeddings outperform contextualized
embeddings on lexical and phrasal tasks [9, 18, 36].

4.5 Case Study
We present a case study with a representative example (Fig. 5)
to illustrate how the graph representation supports with multi-
granular information aggregation to fulfill the query intent. The
importance of tabular graph nodes in the heat-map reflects the
index frequency of node representations in max-pooling operation.

We observe when answering the query “asian countries currency”,
the first column and the seventh column of the retrieved table con-
tribute the most. This is reasonable as both columns cover some
aspects of the query. The first column is the header of rows, indi-
cating that this table is about countries and their currencies. The
seventh column is the currency of an Asian country Lebanon. This

phenomenon shows the effectiveness of global nodes in tabular
graphs. However, the tenth column, which is also about the cur-
rency of an Asian country Syria, does not attract as much attention
as the seventh column does. One possible reason is that when more
than one node covers similar information, the max-pooling opera-
tor may take the most informative one to leave capacity for other
kinds of information. In this case, one of Lebanon and Syria is suf-
ficient to fulfill the query intent about Asian countries. Moreover,
we observe that some cell nodes, such as the node of “Currency” in
the first column and nodes of cells in the seventh column, also have
a high frequency to be selected by max-pooling. This shows that
both global nodes and local nodes can contribute to query-graph
matching. Some neighbors of the highly influential nodes men-
tioned above may also be frequently selected by pooling. This is
likely attributed to that relevant information is propagated through
the tabular graph from highly influential nodes to their neighbors.

5 CONCLUSION
In this paper, we proposed a novel framework for complex table
retrieval. The GTR framework includes a tabular graph representa-
tion strategy that captures the cell structure dependencies, with
row nodes and column nodes for high-level feature aggregation.
GTR applies a tabular Graph Transformer to effectively support
multi-granular feature extraction with tabular graphs as inputs. In
addition, we introduced a self-supervised pre-training task which
leverages the contextual information as free-labels, so as to enhance
the robustness of the tabular Graph Transformer. At last, a compre-
hensive set of experiments and analysis show GTR’s state-of-the-art
performance based on NLTR benchmarks, and demonstrate the
capability of this framework in terms of cross-dataset generaliza-
tion, handling complex table structures, and fulfilling diverse query
intents. For future work, we plan to extend the use of GTR to other
table-related tasks, such as table summarization [4, 11] and table-
text grounding [30]. Applying the graph-based table representation
for perceptional tasks, such as cell structure recognition [68] and
functional block detection [29], is another meaningful direction.

ACKNOWLEDGEMENT
We appreciate the anonymous reviewers for their insightful com-
ments and suggestions. This material is based upon work sponsored
by the DARPA MCS program under Contract No. N660011924033
with the United States Office Of Naval Research, and by Air Force
Research Laboratory under agreement number FA8750-20-2-10002.

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1480

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[2] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural ma-

chine translation by jointly learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015.

[3] SreeramBalakrishnan, AlonHalevy, Boulos Harb, Hongrae Lee, JayantMadhavan,
Afshin Rostamizadeh, Warren Shen, Kenneth Wilder, Fei Wu, and Cong Yu. 2015.
Applying webtables in practice. In 7th Biennial Conference on Innovative Data
Systems Research (CIDR ‘15).

[4] Junwei Bao, Duyu Tang, Nan Duan, Zhao Yan, Yuanhua Lv, Ming Zhou, and
Tiejun Zhao. 2018. Table-to-text: Describing table region with natural language.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[5] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2013. Meth-
ods for exploring and mining tables on wikipedia. In Proceedings of the ACM
SIGKDD Workshop on Interactive Data Exploration and Analytics. 18–26.

[6] Michael J Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data inte-
gration for the relational web. Proceedings of the VLDB Endowment 2, 1 (2009),
1090–1101.

[7] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
2008. Webtables: exploring the power of tables on the web. Proceedings of the
VLDB Endowment 1, 1 (2008), 538–549.

[8] Wei-Cheng Chang, X Yu Felix, Yin-Wen Chang, Yiming Yang, and Sanjiv Ku-
mar. 2019. Pre-training Tasks for Embedding-based Large-scale Retrieval. In
International Conference on Learning Representations.

[9] Muhao Chen, Weijia Shi, Pei Zhou, and Kai-Wei Chang. 2019. Retrofitting Contex-
tualizedWord Embeddings with Paraphrases. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP).

[10] Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Yang Wang, and
William W. Cohen. 2021. Open Question Answering over Tables and Text. In
International Conference on Learning Representations. https://openreview.net/
forum?id=MmCRswl1UYl

[11] Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and William Yang Wang. 2020.
Logical Natural Language Generation from Open-Domain Tables. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics. 7929–
7942.

[12] WenhuChen, HongminWang, Jianshu Chen, Yunkai Zhang, HongWang, Shiyang
Li, Xiyou Zhou, and William Yang Wang. 2019. TabFact: A Large-scale Dataset
for Table-based Fact Verification. In International Conference on Learning Repre-
sentations.

[13] Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and
William Yang Wang. 2020. HybridQA: A Dataset of Multi-Hop Question An-
swering over Tabular and Textual Data. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Findings. 1026–1036.

[14] Yiran Chen, Pengfei Liu, Ming Zhong, Zi-Yi Dou, Danqing Wang, Xipeng Qiu,
and Xuan-Jing Huang. 2020. An Empirical Study of Cross-Dataset Evaluation for
Neural Summarization Systems. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings. 3679–3691.

[15] Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu, and Brian D. Davison.
2020. Table Search Using a Deep Contextualized Language Model. Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval (2020).

[16] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1724–1734.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[18] Kawin Ethayarajh. 2019. How Contextual are Contextualized Word Represen-
tations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 55–65.

[19] Jing Fang, Prasenjit Mitra, Zhi Tang, and C Lee Giles. 2012. Table header detection
and classification. In Twenty-Sixth AAAI Conference on Artificial Intelligence.

[20] Majid Ghasemi-Gol and Pedro Szekely. 2018. Tabvec: Table vectors for classifica-
tion of web tables. arXiv preprint arXiv:1802.06290 (2018).

[21] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. 249–256.

[22] Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely. 2019. Tabular Cell Classifica-
tion Using Pre-Trained Cell Embeddings. In 2019 IEEE International Conference

on Data Mining (ICDM). IEEE, 230–239.
[23] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[24] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing via Pre-
training. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. 4320–4333.

[25] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1. IEEE, 278–282.

[26] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for Pre-training Graph Neural Networks. In
International Conference on Learning Representations.

[27] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun.
2020. GPT-GNN: Generative Pre-Training of Graph Neural Networks (KDD
’20). 1857–1867.

[28] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag
of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers. Association for Computational Linguistics, 427–431.

[29] Sun Kexuan, Rayudu Harsha, and Jay Pujara. 2021. A Hybrid Probabilistic
Approach for Table Understanding. In Thirty-Fifth AAAI Conference on Artificial
Intelligence.

[30] Dae Hyun Kim, Enamul Hoque, Juho Kim, and Maneesh Agrawala. 2018. Facil-
itating document reading by linking text and tables. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology. 423–434.

[31] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[32] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[33] Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-
based translation. In Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology-Volume 1. 48–54.

[34] Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh
Hajishirzi. 2019. Text Generation from Knowledge Graphs with Graph Trans-
formers. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). 2284–2293.

[35] Rémi Lebret, David Grangier, and Michael Auli. 2016. Neural Text Generation
from Structured Data with Application to the Biography Domain. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing.
1203–1213.

[36] Qianchu Liu, Diana McCarthy, and Anna Korhonen. 2020. Towards Better
Context-aware Lexical Semantics: Adjusting Contextualized Representations
through Static Anchors. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). 4066–4075.

[37] Ying Liu, Kun Bai, Prasenjit Mitra, and C Lee Giles. 2007. Tableseer: automatic
table metadata extraction and searching in digital libraries. In Proceedings of the
7th ACM/IEEE-CS joint conference on Digital libraries. 91–100.

[38] Ying Liu, Kun Bai, Prasenjit Mitra, C Lee Giles, et al. 2007. Tablerank: A ranking
algorithm for table search and retrieval. In Proceedings of the National Conference
on Artificial Intelligence, Vol. 22. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 317.

[39] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective
Approaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. 1412–1421.

[40] Andrew LMaas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier nonlinearities
improve neural network acoustic models. In International Conference on Machine
Learning (ICML).

[41] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing
on Semi-Structured Tables. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). 1470–1480.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
PyTorch: An Imperative Style, High-Performance Deep Learning Library.. In
NeurIPS.

[43] Rakesh Pimplikar and Sunita Sarawagi. 2012. Answering table queries on the
web using column keywords. Proceedings of the VLDB Endowment 5, 10 (2012),
908–919.

[44] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. Citeseer, 29–48.

[45] SE ROBERTSON, S WALKER, S JONES, MM HANCOCK-BEAULIEU, and M
GATFORD. 1995. Okapi at TREC-3. NIST special publication 500225 (1995),
109–123.

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1481

https://openreview.net/forum?id=MmCRswl1UYl
https://openreview.net/forum?id=MmCRswl1UYl

[46] Michael Schlichtkrull, Vladimir Karpukhin, Barlas Oğuz, Mike Lewis, Wen-tau
Yih, and Sebastian Riedel. 2020. Joint Verification and Reranking for Open Fact
Checking Over Tables. arXiv preprint arXiv:2012.15115 (2020).

[47] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM international conference on conference on
information and knowledge management. 101–110.

[48] Roee Shraga, Haggai Roitman, Guy Feigenblat, and Mustafa Canim. 2020. Ad
hoc table retrieval using intrinsic and extrinsic similarities. In Proceedings of The
Web Conference 2020. 2479–2485.

[49] Roee Shraga, Haggai Roitman, Guy Feigenblat, and Mustafa Cannim. 2020. Web
Table Retrieval using Multimodal Deep Learning. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1399–1408.

[50] Roee Shraga, Haggai Roitman, Guy Feigenblat, and Bar Weiner. 2020. Projection-
based Relevance Model for Table Retrieval. In Companion Proceedings of the Web
Conference 2020. 28–29.

[51] MICHAEL STONEBRAKER, EUGENE WONG, PETER KREPS, and GERALD
HELD. 1976. The Design and Implementation of INGRES. ACM Transactions on
Database Systems 1, 3 (1976), 189–222.

[52] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. 2019. InfoGraph:
Unsupervised and Semi-supervised Graph-Level Representation Learning via
Mutual Information Maximization. In International Conference on Learning Rep-
resentations.

[53] Yibo Sun, Zhao Yan, Duyu Tang, Nan Duan, and Bing Qin. 2019. Content-based
table retrieval for web queries. Neurocomputing 349 (2019), 183–189.

[54] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[55] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Con-
ference on Learning Representations (2018). https://openreview.net/forum?id=
rJXMpikCZ accepted as poster.

[56] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep Graph Infomax. In International Conference on
Learning Representations.

[57] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei
Wu, Gengxin Miao, and Chung Wu. 2011. Recovering semantics of tables on the
web. Proceedings of the VLDB Endowment 4, 9 (2011), 528–538.

[58] Haoyu Wang, Muhao Chen, Hongming Zhang, and Dan Roth. 2020. Joint Con-
strained Learning for Event-Event Relation Extraction. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
696–706.

[59] Hao Wang, Xiaodong Zhang, Shuming Ma, Xu Sun, Houfeng Wang, and Mengxi-
ang Wang. 2018. A neural question answering model based on semi-structured
tables. In Proceedings of the 27th International Conference on Computational Lin-
guistics. 1941–1951.

[60] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[61] Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a semantic parser
overnight. In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). 1332–1342.

[62] Stephen J Wright. 2015. Coordinate descent algorithms. Mathematical Program-
ming 151, 1 (2015), 3–34.

[63] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SQLNet: Generating Structured
Queries From Natural Language Without Reinforcement Learning. arXiv preprint
arXiv:1711.04436 (2017).

[64] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. 8413–8426.

[65] Li Zhang, Shuo Zhang, and Krisztian Balog. 2019. Table2Vec: neural word and
entity embeddings for table population and retrieval. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1029–1032.

[66] Shuo Zhang and Krisztian Balog. 2018. Ad hoc table retrieval using semantic
similarity. In Proceedings of the 2018 World Wide Web Conference. 1553–1562.

[67] Xingyao Zhang, Linjun Shou, Jian Pei, Ming Gong, Lijie Wen, and Daxin Jiang.
2020. A Graph Representation of Semi-structured Data for Web Question An-
swering. In Proceedings of the 28th International Conference on Computational
Linguistics. 51–61.

[68] Xinyi Zheng, Douglas Burdick, Lucian Popa, Xu Zhong, and Nancy Xin Ru Wang.
2021. Global table extractor (gte): A framework for joint table identification and
cell structure recognition using visual context. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 697–706.

[69] Guangyu Zhou, Muhao Chen, Chelsea JT Ju, ZhengWang, Jyun-Yu Jiang, andWei
Wang. 2020. Mutation effect estimation on protein–protein interactions using
deep contextualized representation learning. NAR Genomics and Bioinformatics
2, 2 (2020), lqaa015.

[70] Moshé M Zloof. 1975. Query-by-example: the invocation and definition of tables
and forms. In Proceedings of the 1st International Conference on Very Large Data
Bases. 1–24.

Session 6C: Natural Language and Semantics SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

1482

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

	Abstract
	1 Introduction
	2 Related Work
	2.1 Natural Language Table Retrieval
	2.2 Pre-training on Semi-structured Data

	3 Method
	3.1 Preliminaries
	3.2 Graph Representation of Tables
	3.3 Query-Table Matching
	3.4 Pre-training
	3.5 Inference

	4 Experiment
	4.1 Experimental Setup
	4.2 Main Results
	4.3 Generalizability Analysis
	4.4 Ablation Study
	4.5 Case Study

	5 Conclusion
	References

