
Tabular Functional Block Detection with Embedding-based
Agglomerative Cell Clustering
Kexuan Sun, Fei Wang, Muhao Chen, Jay Pujara

Department of Computer Science & Information Sciences Institute, University of Southern California
{kexuansu,fwang598,muhaoche,jpujara}@usc.edu

ABSTRACT
Tables are a widely-used format for data curation. The diversity of
domains, layouts, and content of tables makes knowledge extrac-
tion challenging. Understanding table layouts is an important step
for automatically harvesting knowledge from tabular data. Since
table cells are spatially organized into regions, correctly identify-
ing such regions and inferring their functional roles, referred to
as functional block detection, is a critical part of understanding
table layouts. Earlier functional block detection approaches fail to
leverage spatial relationships and higher-level structure, either de-
pending on cell-level predictions or relying on data types as signals
for identifying blocks. In this paper, we introduce a flexible func-
tional block detection method by applying agglomerative clustering
techniques which merge smaller blocks into larger blocks using
two merging strategies. Our proposed method uses cell embeddings
with a customized dissimilarity function which utilizes local and
margin distances, as well as block coherence metrics to capture cell,
block, and table scoped features. Given the diversity of tables in
real-world corpora, we also introduce a sampling-based approach
for automatically tuning distance thresholds for each table. Exper-
imental results show that our method improves over the earlier
state-of-the-art method in terms of several evaluation metrics.

CCS CONCEPTS
• Information systems→ Information systems applications.

KEYWORDS
Table processing, Block detection, Agglomerative clustering

ACM Reference Format:
Kexuan Sun, Fei Wang, Muhao Chen, Jay Pujara. 2021. Tabular Functional
Block Detection with Embedding-based Agglomerative Cell Clustering. In
Proceedings of the 30th ACM International Conference on Information and
Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD,
Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3459637.3482484

1 INTRODUCTION
Tables offer a means to efficiently communicate complex relation-
ships between large amounts of data. This convenience has allowed
tables to become ubiquitous, with billions of tables now available

This work is licensed under a Creative Commons Attribution International 4.0
License.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8446-9/21/11.
https://doi.org/10.1145/3459637.3482484

Figure 1: A t-SNEvisualization of sampled functional blocks.

in Web corpora. However, the diversity of domains, formats, and
layouts of tables makes it difficult to automatically parse, extract
and relate content in different tables. Consequently, diverse work
has addressed these challenges, such as identifying tables in PDFs
or spreadsheets [8, 11, 21], and jointly reasoning over natural lan-
guage and relevant tables [2, 23, 28]. In this paper, we address the
problem of understanding the structure of tables.

Tables communicate information through the layout of data.
Individual cells of tables are spatially organized into regions of
coherent functionalities. Through the relative location of groups
of cells, relationships such as attribute-value relationships, index-
ing by dimensions, subsumption hierarchies, and metadata such as
provenance can be expressed. Identifying such regions and inferring
their functional roles is an essential step for analyzing table lay-
outs. Understanding table layouts could benefit many downstream
tasks. For example, table headers can be utilized as properties in
semantic modeling [29] and identifying columns can improve table
representation learning [41].

The task of functional block detection, originally introduced
in [30] consists of two goals: detecting block regions and labeling
the regions. However, the diversity of table structures, layouts, and
content make functional block detection a challenging task. Figure 2
shows three tables and the functional roles of their components.
These tables convey different types of information and have differ-
ent layouts. For example, (a) consists primarily of textual values,
while (b) conveys mostly numerical values, and (c) includes meta
information and has nested headers or attributes.

In recent years, several attempts have addressed tabular func-
tional block detection [30, 35]. In a recent study, Sun et al. [35] intro-
duced a system that first used a Markov Chain Monte Carlo-based
(MCMC) method to identify block boundaries and then applied a
neuro-symbolic approach to infer the labels using probabilistic soft
logic [1]. The main drawbacks of the MCMC method are two-fold.
First, it only leverages data types whereas global spatial constraints

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1744

https://doi.org/10.1145/3459637.3482484
https://doi.org/10.1145/3459637.3482484
https://doi.org/10.1145/3459637.3482484
https://creativecommons.org/licenses/by/4.0/

(a)

(b) (c)

Figure 2: Metadata, Header, Attribute, and Data blocks are colored in orange, green, blue, and grey.

are ignored. Second, the two steps (row-wise and column-wise split-
ting) are inflexible for complex tables and may further propagate
errors. Another task closely related to functional block detection is
cell functional role classification [4, 20, 38]. This is a cell-level task
that only infers functional roles for cells. Previous works focus on
using either handcrafted stylistic or formatting features [3, 20], or
embedding models to learn low-dimensional cell representation
vectors [14]. Koci et al. [22] introduced an approach that also consid-
ers block structures as a way to correct imperfect cell classification
predictions. Another relevant task is table recognition which aims
to recognize tables from documents such as HTMLs [37], PDFs [11]
and spreadsheets [8]. Despite the same goal of region identification
as block detection, this task does not require classifying the detected
regions. There is still a lack of general approaches that consider
rich latent cell information for identifying functional blocks.

To address the aforementioned issues, we propose an agglomer-
ative clustering-based method for functional block detection. Ag-
glomerative clustering [25, 26, 40] is a class of algorithms used for
cluster analysis in data mining. In general, the algorithms recur-
sively merge small clusters into larger clusters based on a dissimilar-
ity measure. In the context of functional block detection, each block
is treated as a cluster. The algorithm starts from treating individual
cells as blocks and recursively merges them into larger blocks. An
agglomerative clustering method contains three components: (1)
a cluster representation method capturing essential features, (2) a
measure of dissimilarity between clusters based on the representation
and (3) a termination condition to stop clustering.

Different from the MCMC method that uses data type distribu-
tions to represent blocks, we leverage the embedded cell vector
representations [14] which capture individual cell features as well
as surrounding context features. Figure 1 shows the positions of
sampled blocks from 80 tables in the t-SNE visualization. Each block
is denoted by a dot. The blocks are relatively clearly clustered based
on their functional roles, which shows the usefulness of leveraging
cell embeddings to reflect the latent block functional information.
To measure the dissimilarity (or distance) between vector represen-
tations, there are various classic distance metrics such as Euclidean
distances, Cosine distances, and Manhattan distances. In addition,
metric learning algorithms are introduced to learn Mahalanobis dis-
tances [15, 34, 39]. To avoid the ambiguity between spatial distance

and representational distance, we subsequently refer to represen-
tational distance as dissimilarity. Based on these distance metrics,
we design a task-specific dissimilarity function considering cell
information, rows/columns information, coherence of blocks and
domain knowledge of data types. Another requirement for cluster-
ing algorithms is the stopping criterion. However, since tables can
be diverse, a fixed threshold may not be suitable for all tables. To
alleviate this issue, we introduce a personalized sampling-based
approach for determining dissimilarity thresholds.

This paper presents a four-fold technical contribution: 1) We in-
troduce a new block detection method based on agglomerative clus-
tering that leverages cell embedding models to represent blocks and
a dissimilarity function considering cell, block and table informa-
tion. 2) We introduce a sampling-based method that uses synthetic
blocks (i.e. randomly sampled blocks) to determine dissimilarity
thresholds. 3) We analyze two different merging strategies for ag-
glomerative clustering that maintain the rectangular constraint of
blocks. 4) We provide a comprehensive set of experiments. The re-
sults show that the proposed method improves over the compared
methods in both block-level and cell-level evaluations.

2 FUNCTIONAL BLOCK DETECTION
In this section, we start by formalizing the problem of functional
block detection (Section 2.1), and then introduce the proposed ag-
glomerative clustering-based block detection method. The method
is composed on three parts: task-specific dissimilarity computation
(Section 2.2), block merging strategies (Section 2.3), and personal-
ized sampling-based threshold selection (Section 2.4).

2.1 Problem Definition
Given a table 𝑇 = ⟨𝑚,𝑛⟩ where 𝑚 is the number of rows and
𝑛 is the number of columns, the goal of functional block de-
tection is to identify a set of non-overlapping rectangular blocks
B = {𝐵1, 𝐵2, · · · , 𝐵𝑘 } where 𝐵𝑖 = ⟨𝑡𝑖 , 𝑙𝑖 , 𝑏𝑖 , 𝑟𝑖 ⟩ and 𝑡𝑖 , 𝑙𝑖 , 𝑏𝑖 , 𝑟𝑖 are
four indices representing the top row, left column, bottom row,
and right column, respectively. Each block 𝐵𝑖 is also assigned a
label 𝐿𝑖 . We consider four functional labels: data presents the main
content of a table, metadata shows the global information of the
table, header indicates attribute names of columns, and attribute
denotes attribute names of rows.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1745

Figure 3: An example table. The pairs of cells from the same
and different functional blocks are denoted by red and green
rectangles, respectively.

2.2 Dissimilarity Measure
An essential part of dissimilarity computation is a function that
determines the closeness between two blocks based on their feature
representations. Experiments by Gol et al. [14] have shown that cell
embeddings capture rich information of table cells and can be used
for cell functional role classification. Based on the ability of cell
embeddings to capture functional roles, we adopt cell embeddings
as the foundation for our block representation. In cell embeddings,
each cell is represented as continuous-valued vector.

In the context of our task, we design the dissimilarity function
combining four types of information: local information between
blocks, margin dissimilarity between adjacent rows or columns, co-
herence of the new block, and domain knowledge about data types.
With the dissimilarity function, at each step, the algorithm proceeds
by merging a pair of adjacent blocks with minimum dissimilarity.

2.2.1 Block Dissimilarity. To merge two blocks, we first con-
sider directly measuring the block-level dissimilarity. We leverage
a block-embedding,𝑉 (𝐵), to represent each block in a vector space.
Given a block is composed of a region of cells, where each cell
can be represented as a vector, we represent the block using an
aggregation of vectors of its constituent cells. In this paper, we
use average aggregation. Let 𝐶𝐸 is the function that maps cells
into a vector space, a block 𝐵 = ⟨𝑡, 𝑙, 𝑏, 𝑟 ⟩ can be represented as

𝑉 (𝐵) =

𝑏∑
𝑖=𝑡

𝑟∑
𝑗=𝑙

𝐶𝐸 (𝑇𝑖,𝑗)

|𝐵 | where𝑇𝑖, 𝑗 is the cell at the 𝑖𝑡ℎ row and 𝑗𝑡ℎ col-
umn of𝑇 . Using this mapping, blocks 𝐵1 and 𝐵2 can be represented
as 𝑉𝐵1 = 𝑉 (𝐵1) and 𝑉𝐵2 = 𝑉 (𝐵2) respectively. The dissimilarity
between 𝐵1 and 𝐵2 is

𝐷𝐵 (𝐵1, 𝐵2) = 𝐷𝑖𝑠𝑡 (𝑉𝐵1 ,𝑉𝐵2) (1)

where 𝐷𝑖𝑠𝑡 is a distance metric (e.g. Euclidean, Cosine, and Maha-
lanobis distances).

2.2.2 Margin Dissimilarity. Measuring dissimilarities between
blocks only takes the local information of the overall block into
account. However, higher-order information such as adjacent rows
or columns are also important. For example, the table in Figure 3
presents the R&D employment information. Since “All industries”
does not have an NAICS code, the cell is empty. In addition, since
the data for 2000 is unavailable, all cells in that column are empty. If
only considering local information, the two empty cells on the third
row are likely to be merged because they have the same textual
information and are spatially close. However, they have different
functional roles. This issue could potentially be solved if a higher-
order measure is also incorporated in the dissimilarity function.
One way to measure the higher-order dissimilarity is to consider
dissimilarity between cells on adjacent rows or columns, which
we refer to as margin dissimilarity. A margin dissimilarity can be

computed using pairwise dissimilarity between vectors of adjacent
cells. For example, if 𝐵1 and 𝐵2 are row-wise adjacent where the
bottom row of 𝐵1 is row 𝑖 and the top row of 𝐵2 is row 𝑖 + 1, the
margin dissimilarity between them is

𝐷𝑀 (𝐵1, 𝐵2) =

𝑛∑
𝑘=1

𝐷𝑖𝑠𝑡 (𝐶𝐸 (𝑇𝑖,𝑘),𝐶𝐸 (𝑇𝑖+1,𝑘))

𝑛
(2)

𝐷𝑖𝑠𝑡 is the same metric as the one used for computing local dissim-
ilarities. Likewise, if 𝐵1 and 𝐵2 are column-wise adjacent blocks,

𝐷𝑀 (𝐵1, 𝐵2) =

𝑚∑
𝑘=1

𝐷𝑖𝑠𝑡 (𝐶𝐸 (𝑇𝑘,𝑖),𝐶𝐸 (𝑇𝑘,𝑖+1))

𝑚 .

2.2.3 Coherence. In addition tominimizing the block andmargin
dissimilarities, anotherway tomeasure dissimilarity is the coherence.
Coherence captures the homogeneity of cell content in the block. A
highly coherent block will have all cell vectors close to each other
in the embedding space, and a block of functionally-equivalent
cells will have higher coherence than a random block. One way
to measure the coherence is to consider the maximum distance
between cell vectors and the mean vector of all cells. Formally,
given a block 𝐵 = ⟨𝑡, 𝑙, 𝑏, 𝑟 ⟩, the coherence of 𝐵 is:

𝐶𝐵 (𝐵) = −
𝑏,𝑟max

𝑖=𝑡,𝑗=𝑙
𝐷𝑖𝑠𝑡 (𝐶𝐸 (𝑇𝑖,𝑗),𝑉 (𝐵)) (3)

For every block pair, the coherence is measured for the new block
produced frommerging the two blocks. For example, given adjacent
blocks 𝐵1 and 𝐵2, suppose merging 𝐵1 and 𝐵2 results in a new block
𝐵′, 𝐶𝐵 (𝐵′) will be used for scoring merging 𝐵1 and 𝐵2.

2.2.4 DomainKnowledge aboutData Types. Besides the afore-
mentionedmeasures, another useful information for assessing block
dissimilarity is data types. Different data types can be a useful signal
for separating blocks. For example, cells with the same data type
are more likely to be in the same block than cells with different
data types. In addition, different pairs of data types may have dif-
fering impedance based on the context. For example, considering
fine-grained data types, a pair of cells with data types <nominal,
location> is more likely to be in different functional blocks than
those with types <organization, location>.

In order to capture the difference between data types, we develop
a learning process that estimates the confidence of separation for
pairs of data types. Specifically, given a table where each cell has
an associated data type, each pair of adjacent cells can be indexed
based on their data types. For each pair of data types, we separate
the respective adjacent cell pairs into positive and negative sets,
where pairs in the positive set appear in the same block and pairs
in the negative set appear in different blocks. Figure 3 shows an
example. For the pair of data types <string, string>, the pair
of cells <Industry, NAICS Code> will be put into the positive
set and the pair <Industry, All Industries> will be put into
the negative set. Each set is associated with a distribution over the
dissimilarities of the cell pairs contained in the set, and we estimate
the confidence of separation based on the difference between the
means of these two distributions.

Formally, for each individual pair of data types ⟨𝑡, 𝑡 ′⟩, the two
collections with pairs of cells in the same blocks and in different
blocks are denoted by 𝑆+ and 𝑆−, respectively. The confidence of

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1746

(a) Col-wise (b) Row-wise (c) Max-merging (d) Min-merging

Figure 4: Examples of row-wise and column-wise unaligned
blocks, and new blocks after Max- and Min-merging.

separation of ⟨𝑡, 𝑡 ′⟩ is defined as

𝑤𝑡,𝑡 ′ = max(𝐷− − 𝐷+, 0)
where 𝐷− = 𝐴𝑣𝑔(𝑐,𝑐′) ∈𝑆−𝐷𝑖𝑠𝑡 (𝐶𝐸 (𝑐),𝐶𝐸 (𝑐 ′)). 𝐷+ is computed in
the same way. This equation is designed based on the assumption:
the larger the difference between the two collections is, the more
separable adjacent cells with this pair of data types are. We use
this confidence of separation as a weighting factor for assessing
the dissimilarity between blocks. We then normalize all weighting
factors such that𝑤𝑡,𝑡 ′ = 1+ 𝑤𝑡,𝑡′

max
𝑡∗,𝑡∗′ 𝑤𝑡∗,𝑡∗′

(If a pair of data types is
not seen in the training set, its weighting factor is 1). Accordingly,
for adjacent blocks 𝐵1 and 𝐵2, the average weighting factor is

𝑤𝑝𝑟 (𝐵1, 𝐵2) = 𝐴𝑣𝑔(𝑐,𝑐′)∈𝑆𝐵1,𝐵2
𝑤𝑡𝑐 ,𝑡𝑐′ (4)

where 𝑆𝐵1,𝐵2 = {(𝑐, 𝑐 ′) |𝑐 ∈ 𝐵1&𝑐 ′ ∈ 𝐵2 & 𝑎𝑑 𝑗𝑎𝑐𝑒𝑛𝑡 (𝑐, 𝑐 ′)}, 𝑡𝑐 and
𝑡𝑐′ represent the data types of 𝑐 and 𝑐 ′, respectively.

2.2.5 Overall Dissimilarity Function. We combine the block
dissimilarity (𝐷𝐵), the margin dissimilarity (𝐷𝑀), block coherence
(𝐶𝐵), and a domain-specific weight (𝑤𝑝𝑟) into an overall dissimilar-
ity function. Given two adjacent blocks 𝐵1 and 𝐵2, and a new block
𝐵′ generated after merging 𝐵1 and 𝐵2, their dissimilarity is
𝐷𝑎𝑙𝑙 (𝐵1, 𝐵2) = 𝑤𝑝𝑟 (𝐵1, 𝐵2) · (𝐷𝐵 (𝐵1, 𝐵2) +𝐷𝑀 (𝐵1, 𝐵2) −𝐶𝐵 (𝐵′)) (5)

2.3 Block Merging
Based on the task-specific dissimilarity measure introduced in the
last section, the next step is to design merging strategies. In our
problem setting, one goal of our task is to identify non-overlapping
rectangular blocks. This indicates that block merging strategies
should always satisfy the rectangular constraint. However, merging
two adjacent blocks does not always result in a rectangular block.
For example, Figure 4a and Figure 4b present two scenarios. The
orange and blue blocks are not perfectly aligned such that merging
them would lead to a non-rectangular block. Since such pairs can
be very common, avoiding them would lead to early stopping and
produce insufficient merging results. Accordingly, we introduce
two new merging strategies to address this issue.

2.3.1 Max-Merging. Given two blocks 𝐵1 = ⟨𝑡1, 𝑙1, 𝑏1, 𝑟1⟩ and
𝐵2 = ⟨𝑡2, 𝑙2, 𝑏2, 𝑟2⟩, the two blocks are extended into two smallest-
possible properly aligned blocks. Specifically, if 𝐵1 and 𝐵2 are
row-wise adjacent and 𝐵1 is above 𝐵2, let 𝑙𝑚𝑖𝑛 = min(𝑙1, 𝑙2) and
𝑟𝑚𝑎𝑥 = max(𝑟1, 𝑟2), the new blocks are 𝐵′1 = ⟨𝑡1, 𝑙𝑚𝑖𝑛, 𝑏1, 𝑟𝑚𝑎𝑥 ⟩ and
𝐵′2 = ⟨𝑡2, 𝑙𝑚𝑖𝑛, 𝑏2, 𝑟𝑚𝑎𝑥 ⟩. Similarly, if 𝐵1 and 𝐵2 are column-wise ad-
jacent, 𝐵′1 = ⟨𝑡𝑚𝑖𝑛, 𝑙1, 𝑏𝑚𝑎𝑥 , 𝑟1⟩ and 𝐵′2 = ⟨𝑡𝑚𝑖𝑛, 𝑙2, 𝑏𝑚𝑎𝑥 , 𝑟2⟩ where
𝑡𝑚𝑖𝑛 = min(𝑡1, 𝑡2) and 𝑏𝑚𝑎𝑥 = (𝑏1, 𝑏2). Figure 4c shows new blocks

Figure 5: A possible infinite loop led by min-merging

extended from the blocks in Figure 4a. Merging the new blocks
leads to a valid rectangular block.

2.3.2 Min-Merging. In addition to Max-Merging, we introduce
a second strategy: Min-Merging to handle situations when Max-
Merging will split existing blocks. Given two blocks 𝐵1 and 𝐵2, this
strategy shrinks them into two largest-possible properly aligned
blocks. Specifically, if 𝐵1 and 𝐵2 are row-wise adjacent, and 𝐵1
is above 𝐵2, 𝐵′1 = ⟨𝑡1, 𝑙𝑚𝑎𝑥 , 𝑏1, 𝑟𝑚𝑖𝑛⟩ and 𝐵′2 = ⟨𝑡2, 𝑙𝑚𝑎𝑥 , 𝑏2, 𝑟𝑚𝑖𝑛⟩
where 𝑙𝑚𝑎𝑥 = max(𝑙1, 𝑙2) and 𝑟𝑚𝑖𝑛 = min(𝑟1, 𝑟2). If they are column-
wise adjacent, 𝐵′1 = ⟨𝑡𝑚𝑎𝑥 , 𝑙1, 𝑏𝑚𝑖𝑛, 𝑟1⟩ and 𝐵′2 = ⟨𝑡𝑚𝑎𝑥 , 𝑙2, 𝑏𝑚𝑖𝑛, 𝑟2⟩
such that 𝑡𝑚𝑎𝑥 = max(𝑡1, 𝑡2) and 𝑏𝑚𝑖𝑛 = min(𝑏1, 𝑏2). Figure 4d
shows the resulting blocks from shrinking the two blocks in Fig-
ure 4b. A potential shortcoming of this strategy is that it may lead
to infinite loops. Figure 5 presents an example. Merging blocks 𝐴
and 𝐵 leads to 𝐴′ and 𝐵′, and merging 𝐴′ and 𝐵′ brings 𝐴′′ and
𝐵′′ which are exactly same as 𝐴 and 𝐵. To avoid infinite loops, the
algorithm keeps track of block pairs which have been merged in
previous steps. We refer to such block pairs as invalid block pairs.
The algorithm will ignore invalid block pairs in future steps. We
note that directly applying min-merging may increase the number
of remaining blocks. In order to make the algorithm as efficient as
possible, we also treat such block pairs as invalid block pairs.

2.4 Sampling-based Threshold Selection
Another important component in agglomerative clustering algo-
rithms is the stopping criterion. In our problem, the stopping cri-
terion is the dissimilarity threshold such that two blocks will not
be merged if their overall dissimilarity (section 2.2.5) is larger than
a threshold. However, since tables can be very diverse, a fixed
dissimilarity threshold may not be suitable for all tables. For exam-
ple, Figure 6a shows distance distributions of sampled block pairs
from two different tables. The ranges of two distributions illustrate
that different tables may have different thresholds. To deal with
this problem, we introduce a sampling-based threshold selection
method that provides a personalized threshold for each individual
table. The details of this process is shown in Algorithm 1. Given a
table, the algorithm first randomly samples a set of synthetic block
pairs such that they are either row-wise or column-wise adjacent.
With the dissimilarity function, each block pair will have an associ-
ated dissimilarity. We set the threshold for this specific table to be
the value at the 𝑝% (0 ≤ 𝑝 ≤ 1) of the frequency distribution where
𝑝 is a hyper-parameter. Figure 6b shows two distance distributions
of block pairs sampled from different adjacent ground-truth blocks,
and those sampled from same ground-truth blocks. It is obvious
that block pairs from different ground-truth blocks generally have
larger distances compared to block pairs from same ground-truth
blocks. In addition, the ranges of the distribution of table 𝐵 in Fig-
ure 6a and that in Figure 6b are similar, which indicates that the
algorithm can potentially identify reasonable thresholds.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1747

(a) (b)

Figure 6: Dissimilarity distribution analysis. (a) presents dis-
tributions of two different tables, and (b) shows distribu-
tions of block pairs from the same and different ground-
truth blocks for Table B.

2.5 The Overall Algorithm
Algorithm 2 shows the overall algorithm. The function 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔
takes a table, and parameters 𝑝 and 𝑘 as the input and produces
candidate blocks. At the beginning of the algorithm, every cell is
treated as an active block. At each iteration, an adjacent block pair
with the smallest dissimilarity (𝐷𝑎𝑙𝑙 in Section 2.2.5) is selected to
merge. To merge the blocks, the algorithm checks if they can be
merged without splitting other existing blocks (𝑣𝑎𝑙𝑖𝑑_𝑚𝑎𝑥_𝑚𝑒𝑟𝑔𝑒

in Algorithm 2). If so, the algorithm chooses to merge them using
the “max-merging”, otherwise “min-merging” policy. After merg-
ing them, new block pairs become active and some existing block
pairs may become invalid. For example, some blocks become in-
active because they are subsets of the new blocks. If the smallest
dissimilarity is larger than the threshold, the algorithm stops and
all current active blocks are returned as candidate blocks.

2.6 Convergence Analysis
We show that the algorithm will converge under two situations:
1) the minimum overall dissimilarity is larger than a threshold,
and 2) there is no active block pairs to be merged. Commonly, the
algorithm stops when it reaches the threshold. Otherwise, it stops
when there are no active block pairs before reaching the threshold.
Since there are two merging policies, the algorithm needs to stop in
either case. For max-merge, blocks are extended without breaking
other blocks. Thus, during each time of extension, at least two
blocks are merged into a single block. The number of active blocks
monotonically decreases. The algorithm automatically stops when
there is only a single active block. For min-merge, since merging
two blocks generates two new blocks, the number of active blocks
does not change. However, after each min-merging, the block pair
becomes invalid and will not be merged again, which avoids the
infinite loops. In other words, the number of valid block pairs
decreases as the algorithm proceeds. The algorithm is terminated
when all active block pairs become invalid.

2.7 Time Complexity Analysis
At the beginning, the agglomerative clustering algorithm treats
each individual cell as a block. For the table 𝑇 with𝑚 rows and 𝑛
columns, the number of active blocks are initialized to be𝑚 × 𝑛.
Since each block can only be merged with its adjacent blocks, there
are 𝑂 (𝑚𝑛) block pairs. If applying max-merging, at each iteration,

Algorithm 1: Thresholds Selection
1 Function select_thresholds(𝑡𝑎𝑏𝑙𝑒 , 𝑝 , 𝑘):
2 𝑝𝑎𝑖𝑟𝑠 ←− sample 𝑘 adjacent block pairs

// Keep track of all dissimilarity values
3 𝑑𝑖𝑠𝑡𝑠 ←− []
4 for 𝑏1, 𝑏2 ∈ 𝑝𝑎𝑖𝑟𝑠 do
5 𝑑𝑖𝑠𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐷𝑎𝑙𝑙 (𝑏1, 𝑏2))
6 𝑡ℎ𝑟𝑒 = the distance at the 𝑝% of the sorted 𝑑𝑖𝑠𝑡𝑠
7 return 𝑡ℎ𝑟𝑒

Algorithm 2: Agglomerative Clustering
1 Function clustering(𝑡𝑎𝑏𝑙𝑒 , 𝑝 , 𝑘):

// 𝑡𝑎𝑏𝑙𝑒 is a 𝑛 ×𝑚 matrix
// Keep track of all active blocks

2 𝑎𝑐𝑡𝑖𝑣𝑒 ←− {}
3 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ←− {}
4 𝑡ℎ𝑟𝑒 ←− 𝑠𝑒𝑙𝑒𝑐𝑡_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 (𝑡𝑎𝑏𝑙𝑒, 𝑝, 𝑘)
5 for 𝑖 < 𝑛 do
6 for 𝑗 <𝑚 do

// Four indices: top, left, bottom, right
7 𝑎𝑐𝑡𝑖𝑣𝑒.𝑎𝑑𝑑 ((𝑖, 𝑗, 𝑖, 𝑗))

8 while |𝑎𝑐𝑡𝑖𝑣𝑒 | > 1 do
// Select the block pair with minimum

dissimilarity from all valid pairs
9 𝑏∗1, 𝑏

∗
2 = argmin𝑏1,𝑏2∈𝑎𝑐𝑡𝑖𝑣𝑒 & (𝑏1,𝑏2)∉𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝐷𝑎𝑙𝑙 (𝑏1, 𝑏2)

10 if 𝐷𝑎𝑙𝑙 (𝑏∗1, 𝑏∗2) ≥ 𝑡ℎ𝑟𝑒 then
11 break

// Check if max-merge without breaking blocks
12 if 𝑣𝑎𝑙𝑖𝑑_𝑚𝑎𝑥_𝑚𝑒𝑟𝑔𝑒 (𝑏∗1, 𝑏∗2) then

// Extend 𝑏∗1 and 𝑏∗2 and update 𝑎𝑐𝑡𝑖𝑣𝑒

13 𝑚𝑎𝑥_𝑚𝑒𝑟𝑔𝑒 (𝑏∗1, 𝑏∗2, 𝑎𝑐𝑡𝑖𝑣𝑒)
14 else

// Shrink 𝑏∗1 and 𝑏∗2 and update 𝑎𝑐𝑡𝑖𝑣𝑒

15 𝑚𝑖𝑛_𝑚𝑒𝑟𝑔𝑒 (𝑏∗1, 𝑏∗2, 𝑎𝑐𝑡𝑖𝑣𝑒)
// Make the pair invalid

16 𝑖𝑛𝑣𝑎𝑙𝑖𝑑.𝑎𝑑𝑑 ((𝑏∗1, 𝑏∗2))

// Return all blocks that are still valid
17 return 𝑎𝑐𝑡𝑖𝑣𝑒 ;

at least two blocks are merged (i.e. the number of active blocks
decreases at least 1), the total number of iterations is at most𝑚 × 𝑛.
During each iteration, each dissimilarity computation between the
new block and its one adjacent block is 𝑂 (𝑑) which depends on
the distance measure and the size of cell vector representations.
Suppose block pairs are stored in a min-heap indexing the pairwise
dissimilarity, the newly generated block pairs should be pushed
into the heap, which costs 𝑂 (log(𝑚 · 𝑛)). If the new block 𝑏 has
𝑚𝑏 < 𝑚 rows and 𝑛𝑏 < 𝑛 columns, the maximum number of its
adjacent blocks is 2× (𝑚𝑏 +𝑛𝑏) (i.e. the number of cells adjacent to
𝑏). Therefore, the time complexity for max-merging only is 𝑂 (𝑚𝑛 ·
(𝑚+𝑛) · (𝑑+𝑙𝑜𝑔(𝑚𝑛))). When applying min-merging, the number of
active blocks does not change. If there are 𝑘 times min-merging, the
amortized time complexitywill be𝑂 ((𝑚𝑛+𝑘)·(𝑚+𝑛)·(𝑑+𝑙𝑜𝑔(𝑚𝑛))).
For each pair of blocks applying min-merging, if we keep track of
the new block generated after merging them, in the worst case, 𝑘
is the total number of possible blocks, 𝑂 (𝑛2𝑚2).

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1748

3 EXPERIMENTS
In this section, we first introduce four datasets (Section 3.1) and
experiment settings (Section 3.2). We then show several metrics
designed for evaluating block quality (Section 3.3). After that, we
present several experiments evaluating the performance of different
methods on boundary detection (Section 3.4.1) and functional role
classification (Section 3.4.2). We finally provide further analysis for
the proposed method (Sections 3.5 and 3.6).

3.1 Datasets
In our experiments, following Sun et al. [35], we use the four
datasets CIUS, SAUS, DeEx and DG. CIUS was originally collected
from the Crime in the US [14] 1 containing 269 annotated sheets.
SAUS was downloaded from the U.S. Census Burea 2. It contains
223 annotated sheets. DeEx was created collected in the DeExcel-
erator project [9] 3 which has 444 annotated sheets. These three
datasets provide cell-level functional role annotations. The last
dataset is DG 4 which was collected and introduced in Sun et al.
[35]. DG provides block-level annotations (block boundary and
labels of functional roles) for 431 tables. In all these datasets, all
cells and blocks are classified into four functional types: header,
attributes, data and metadata.

3.2 Experimental Setup
The proposed method leverages a cell embedding model to provide
cell vector representations and cell data types. We use the cell
embedding model introduced in [14] as the default model, and
we run the cell classifier component in the table understanding
system proposed in [35] to generate cell data types. We use the
most fine-grained data types: cardinal, nominal, ordinal, person,
location, organization, other string, datetime and empty. We use the
supervised Neighborhood Components Analysis (NCA) algorithm
implemented in the metric-learn library5 [5] to learn task-specific
distance metric. We run 5-fold cross validation evaluation in all
experiments where the train and develop sets have ratio 9:1. For
SAUS, CIUS and DeEx datasets, we select the parameter 𝑝 among
[0.2, 0.3, 0.4, 0.5] according to their cell-level macro F1 scores, and
for DG dataset, we select the parameter 𝑝 among [0.2, 0.4, 0.6, 0.8]
based on the block-level macro F1 scores. All experiments are run on
a machine Intel(R) Xeon(R) Gold 5220 CPU@ 2.20GHz.We compare
the proposed method with the following baseline methods:

Conditional Random Field (CRF) was originally used in [3].
The implementation uses the pystruct library with max_iter set to
be 1000, tol set to be 0.01, C_range selected from [0.1, 0.3, 0.5, 0.7,
1.0] and uses the stylistic and formatting features.

Random Forest (RF) was used as a base model in the block
detector in [35]. We use the implementation from scikit-learn 6.
The parameter n_estimator is selected among [100, 300], max_depth
is selected among [5, 50, None], and min_sample_split is selected
among [1, 10].

1https://ucr.fbi.gov/crime-in-the-u.s
2http://dbgroup.eecs.umich.edu/project/sheets/datasets.htm
3https://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator/
4https://www.data.gov
5http://contrib.scikit-learn.org/metric-learn/index.html
6https://scikit-learn.org

Recurrent Neural Network (RNN) is another classifier intro-
duced in [14]. It uses LSTM blocks to encode neighborhood infor-
mation. We set the epoch to be 50 and learning rate to be 0.0001.

Markov-Chain Monte Carlo (MCMC) method is proposed
in [35]. It first performs random row-wise splitting and then column-
wise splitting on row-blocks. It uses a PSL model to label blocks.
The PSL model takes either RF or RNN as the base classifier. In this
paper, we also use the PSL model to label blocks. In addition, to be
fair, we apply a post-processing step as is used in [35].

For the first three baseline methods, we use the region-based
approach from [22] to create blocks. It first merges adjacent cells
on the same row to build row intervals and then merges adjacent
row intervals into rectangular blocks.

3.3 Evaluation Metrics
To evaluate the performance of different methods on functional
block detection, we use two main types of metrics.

3.3.1 Error-of-Boundary (EoB). EoBwas originally introduced in [8]
for evaluating the table detection models. It measures how precisely
a predicted rectangular region is aligned with a ground-truth rect-
angular region. Given a ground-truth block 𝐵 = ⟨𝑡, 𝑙, 𝑏, 𝑟 ⟩ and a
predicted block 𝐵′ = ⟨𝑡 ′, 𝑙 ′, 𝑏 ′, 𝑟 ′⟩, the EoB between them is

𝐸𝑜𝐵 (𝐵, 𝐵′) = max
(
|𝑡 − 𝑡 ′ |, |𝑏 − 𝑏′ |, |𝑙 − 𝑙′ |, |𝑟 − 𝑟 ′ |

)
.

To evaluate the EoB over all blocks, Sun et al. [35] uses another
variant of EoB that measures the table-level average EoB

𝐸𝑜𝐵𝑡 =
∑

1≤𝑖≤𝑁,1≤ 𝑗≤𝑀

1
|𝐵𝑖 𝑗 ∩ 𝐵′𝑖 𝑗 |

𝐸𝑜𝐵 (𝐵𝑖 𝑗 , 𝐵′𝑖 𝑗),

where 𝐵𝑖 𝑗 is the ground-truth block that the cell at 𝑖𝑡ℎ row and
𝑗𝑡ℎ column belongs to, and 𝐵′

𝑖 𝑗
is the predicted block that this

cell belongs to. A smaller 𝐸𝑜𝐵𝑡 indicates a better performance. In
addition to such table-level EoB, to avoid the effect of the number
of blocks in a table, we also evaluate on the pairwise EoB

𝐸𝑜𝐵𝑝 = 𝐴𝑣𝑔
𝐵,𝐵′,|𝐵∩𝐵′ |≥1

𝐸𝑜𝐵 (𝐵, 𝐵′) .

3.3.2 Precision and Recall. Although the two variants of EoB are
useful in evaluating the block boundary quality, it is unbounded
and not designed for evaluating the classification results. We bor-
row metrics from the multi-class object detection task in computer
vision [10] to simultaneously measure both detection and classifi-
cation challenges. For each table, given a set of ground-truth blocks
B = {𝐵1, 𝐵2, · · · } and a set of predicted blocks B′ = {𝐵′1, 𝐵

′
2, · · · },

each predicted block 𝐵′ is assigned to a ground-truth block 𝐵 ac-
cording to the overlap ratio IoU:

𝐼𝑜𝑈 (𝐵, 𝐵′) = 𝑎𝑟𝑒𝑎(𝐵) ∩ 𝑎𝑟𝑒𝑎(𝐵′)
𝑎𝑟𝑒𝑎(𝐵) ∪ 𝑎𝑟𝑒𝑎(𝐵′) .

There are following situations: 1) If multiple predicted blocks are
assigned to the same ground-truth block, the one with the same
label and the highest IoU is a true positive and the remaining blocks
are false positives. 2) If a predicted block has the same label as the
ground-truth block but the IoU < 0.5, it is a false positive. 3) If a
ground-truth block has not correctly identified, it is a false negative.
4) If a predicted block cannot be matched to any of the ground-truth
block properly, it is considered a false positive.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1749

https://ucr.fbi.gov/crime-in-the-u.s
http://dbgroup.eecs.umich.edu/project/sheets/datasets.htm
https://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator/
https://www.data.gov
http://contrib.scikit-learn.org/metric-learn/index.html
https://scikit-learn.org

Table 1: Results of block evaluations. Pr (Precision), Re (Recall) and F1 scores are percentage values. The best scores are high-
lighted. For AC, scores that are greater than the scores for MCMC are underlined.

Method 𝐸𝑜𝐵𝑡 𝐸𝑜𝐵𝑝
Metadata Data Header Attribute Average

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

CRF 5357 172 64.6 30.2 41.0 13.3 31.6 17.6 88.2 77.8 82.5 5.6 14.5 7.8 42.9 38.5 37.2
RF 63565 321 52.3 70.2 59.6 0.3 16.7 0.5 15.5 76.3 25.6 0.3 9.5 0.5 17.1 43.2 21.6
RNN 20999 289 39.5 22.4 24.9 2.7 53.4 5.1 42.2 77.2 54.3 1.8 22.1 3.4 21.6 43.8 21.9

MCMC(RF) 3904 161 54.6 35.6 42.9 19.9 68.5 30.0 61.6 81.5 70.0 11.1 22.8 14.6 36.8 52.1 39.4
MCMC(RNN) 2146 151 42.3 32.0 36.2 25.8 82.5 38.9 79.4 77.3 78.3 18.6 32.0 23.1 41.5 55.9 44.1

AC(RF) 381 57 45.8 38.7 41.8 52.4 70.3 59.7 73.7 81.4 77.0 44.2 34.2 38.4 54.0 56.2 54.2
AC(RNN) 245 39 45.8 31.6 37.1 61.0 84.3 70.1 79.2 75.8 77.4 54.4 33.0 41.0 60.1 56.2 56.4

Given the evaluation criterion, for each class, we can compute a
Precision, a Recall and the corresponding F1 measure. To consider
the performance of whole predictions, we can evaluate the macro-
average F1 over all classes accordingly.

3.4 Main Results
3.4.1 Experiment for Functional Blocks. We first evaluate the pro-
posed method (referred to as AC) using the aforementioned metrics
on the DG dataset. Table 1 presents the results of different methods.
Note that AC uses the same labeling process as the MCMC. The
main difference between MCMC and AC is the way they identify
blocks. In terms of two variants of EoB which do not consider func-
tional role labels, the proposed AC significantly outperforms the
MCMC, which indicates AC has better alignments to the ground-
truth blocks. In terms of macro-average Precision, Recall and F1
scores, the AC method with both RF and RNN classifiers shows
significant improvements over MCMC. Among four block func-
tion classes, only F1 scores on Metadata of AC(RF) and Header of
AC(RNN) performs worse than the corresponding MCMC method.

3.4.2 Auxiliary Experiment for Cells. In addition to the block-level
evaluation, we also conduct an auxiliary experiment for evaluating
cell-level functional roles. This is based on the assumption that
better blocks could also assist the classification for cells within
the blocks. Given a labeled block, all cells within this block are
also automatically assigned the same label of functional role. In
this experiment, we use all four datasets CIUS, SAUS, DeEx and
DG. For CIUS, SAUS, and DG datasets, AC (RF) performs the best
and for both RF and RNN classifiers, AC improves over the cor-
responding MCMC methods with a relatively large margin. The
only exception is the DeEx dataset, AC (RF) shows similar perfor-
mance and AC (RNN) performs worse than MCMC (RNN). In the
proposed AC method, we learn the domain knowledge about data
types, which uses data types predicted from a cell classifier and
ground-truth blocks. For SAUS, CIUS and DeEx, we automatically
create ground-truth blocks by merging same-label adjacent cells.
The main possible reason of the worse performance of DeEx dataset
is the cell data type errors propagated from the cell classifier and
the errors of the automatically created ground-truth blocks. For
example, some cells should be in the same ground-truth block but
are separated by empty cells which were not annotated.

(a) Effect of the sample size (b) Effect of the parameter 𝑝.

Figure 7: Ablation Studies on the DG dataset.

3.5 Ablation Studies
In this section, we investigate different components of our method.

3.5.1 Effect of Dissimilarity Function Components. As is introduced
in Section 2.2, in the proposed method, besides the block dissimilar-
ity, we also leverage three types of information: margin dissimilarity,
coherence of the merged block, and the domain knowledge of data
types. We remove each of these three components and provide the
results in table 3. In general, after removing these components, the
performance on all metrics become worse. Removing the margin
dissimilarity and data type knowledge, although the performance
on EoB𝑝 does not have much difference, both cell-level and block-
level F1 scores decrease significantly. Removing coherence leads
to much worse EoB which indicates that coherence can make dis-
similarities between block pairs more diverse such that it becomes
easier to find a better threshold.

3.5.2 Effect of the Number of Samples. In order to determine per-
sonalized threshold, we introduced a sampling-based method to
sample synthetic block pairs and create a synthetic distance distri-
bution. In this experiment, we show the effect of the sample size.
We select the dissimilarity value at 80% of the distribution (i.e. the
parameter 𝑝 = 0.8). We choose values ranging from 10 to 5000 and
show the cell-level and block-level F1 scores. Figure 7a presents
the results. As the sample size increases, F1 scores on both level
first increase and then become stable. This is reasonable because
when the sample size is small, the synthetic block pairs are not
representative enough to determine a good threshold.

3.5.3 Effect of parameter 𝑝 . With a synthetic dissimilarity distri-
bution, we still need a parameter to determine the threshold. In our

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1750

Table 2: Results of cell evaluations. Bold and underlined values have the same meaning as those in Table 1.

Method CIUS SAUS

Metadata Data Header Attribute Macro F1 Metadata Data Header Attribute Macro F1

CRF 96.5 67.6 94.9 36.8 73.9±8.9 80.7 82.2 95.7 38.2 74.2±5.8
RNN 99.5 99.2 98.2 89.2 96.5±4.0 91.9 97.0 77.6 79.5 86.5±3.7
RF 95.9 99.7 88.9 97.0 95.4±0.6 79.1 98.6 78.8 91.1 86.9±4.0

MCMC(RNN) 94.3 99.2 97.0 89.2 94.9±4.0 85.6 97.7 85.3 80.8 87.4±2.9
MCMC(RF) 93.6 99.7 96.0 97.6 96.7±1.1 80.6 99.0 85.4 92.8 89.4±2.5
AC(RNN) 96.2 99.2 98.6 89.2 95.8±3.8 93.6 97.5 84.5 80.0 88.9±3.2
AC(RF) 94.6 99.8 96.8 97.8 97.2±0.8 83.4 99.0 87.4 92.4 90.6±2.1

Method DeEx DG

Metadata Data Header Attribute Macro F1 Metadata Data Header Attribute Macro F1

CRF 35.6 55.7 48.0 1.7 35.3±6.9 42.3 53.0 95.2 32.9 55.8±7.0
RNN 33.8 96.1 47.2 39.5 54.2±5.9 25.2 96.5 85.1 80.0 71.7±3.1
RF 53.4 98.4 51.0 26.5 57.3±2.0 71.9 96.0 80.6 78.0 81.6±2.4

MCMC(RNN) 38.5 97.2 53.5 44.9 58.5±8.0 62.0 96.3 89.1 78.4 81.5±4.0
MCMC(RF) 65.4 98.8 60.5 26.0 62.7±3.9 73.8 95.8 91.7 76.0 84.3±4.6
AC(RNN) 50.2 98.4 57.2 18.1 56.0±5.4 68.0 96.2 90.7 77.0 83.0±2.4
AC(RF) 64.3 98.7 59.7 27.8 62.6±3.0 77.3 96.1 93.7 76.1 85.8±4.2

Table 3: Effect of different components in the overall dis-
tance function. F1𝑐 represents the macro-average F1 score
for cell-level classification, and F1 represents the macro-
average F1 score of block-level measures.

Method 𝐸𝑜𝐵𝑡 𝐸𝑜𝐵𝑝 Pr Re F1 F1𝑐

AC Full 417 60 52.9 56.6 54.0 86.5

- w/o Margin 529 66 50.2 53.5 50.6 84.7
- w/o Coherence 3212 191 31.1 54.2 37.7 85.1
- w/o Domain 519 59 51.4 49.1 48.7 81.3

method, we use a parameter 𝑝 such that the dissimilarity value at
the 𝑝% of the dissimilarity distribution is selected as the threshold.
In this experiment, we investigate on the value of 𝑝 . We run ex-
periments with 𝑝 ranging from 0.1 to 1.0 and show the results on
two F1 scores in fig. 7b. Before 0.8, as 𝑝 increases, the block-level
F1 score increases and the cell-level F1 score is relatively stable,
which is reasonable because when 𝑝 is small, the algorithm is easier
to meet the stopping criterion and the number of blocks will be
large and the block-level F1 score will increase. As cells within
the same predicted block do have the same role, the cell-level F1
score remains stable. When 𝑝 is greater than 0.8, the blocks become
over-merged and both cell-level and block-level F1 scores decrease.

3.5.4 Effect of Embedding. Since the proposed method highly de-
pends on the cell embedding, in this experiment, we remove the
influence of the cell embedding and show how the method will
perform in the ideal case. We use ground-truth blocks to generate
synthetic dissimilarity instead of using cell embedding-dependent
dissimilarity function. The synthetic distance generation is com-
pleted using the following steps. 1)We assume the ideal dissimilarity

distribution follows normal distribution. 2) For each table, we sam-
ple synthetic block pairs using ground-truth blocks and constitute
two distributions for block pairs the same ground-truth block, and
for block pairs from different ground-truth blocks. We can then
compute the mean and the variance of the two distributions. 3) We
learn the average variances 𝜎2𝑠 and 𝜎2

𝑑
for distributions of same

ground-truth block and different ground-truth block, and the mean
𝜇𝑑 and 𝜇𝑠 of them using a training set. We then construct the two
distributions 𝐷𝑠 = (0, 𝜎𝑠) and 𝐷𝑑 = (𝜇𝑑 − 𝜇𝑠 , 𝜎𝑑). 4) During in-
ference, when two blocks are in the same ground-truth block, we
sample a distance from 𝐷𝑠 , otherwise, from 𝐷𝑑 .

With ideal dissimilarity distributions, the agglomerative cluster-
ing algorithm could identify nearly perfect block boundaries (with
𝐸𝑜𝐵𝑡 = 6, 𝐸𝑜𝐵𝑝 = 1, block 𝑃𝑟 = 71.1%, 𝑅𝑒 = 66.3% and 𝐹1 = 68.0%)
and better classification results (macro F1=92.5%). The not-good-
enough F1 scores are attributed to the limitation of the current
classifiers. This is also the reason that all Precision, Recall and F1
scores in Table 1 are generally relatively low.

3.6 Case Study
For detailed analysis, we show the output blocks of the proposed
method and two strong baselines on an example table. Figure 8
presents the results. The result of AC is the same as gold labels.
Since MCMC only depends on data types and some numeric values
on the second column were not correctly classified, the second
column is incorrectly separated from the rest of the data block.
While the RF classifier predicts many cells in the second column as
“attribute” and the large block is eventually classified as “attribute”
block. Compared to MCMC, AC does not only depend on data types,
small distances in the embedding space make the second column
merged into the rest of the data block. This also indicates that the
proposed AC method is more stable and more error-tolerant.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1751

(a) RF (b) MCMC (c) AC

Figure 8: Case study. Metadata, Header, Attribute, and Data blocks are colored in orange, green, blue, and grey.

4 RELATEDWORK
In this section, we discuss two lines of works which are closely
related to this paper.

Table and Functional Block Detection. Table detection is an
important task towards automated table analysis [12, 42, 43], which
seeks to recognize table layouts in documents as minimal bounding
boxes. There are many research works aiming at solving this prob-
lem. Earliest studies focused on rule-based methods. For example,
Hirayama [18] distinguished tables from text areas according to
horizontal and vertical lines and they used a dynamic program-
ming matching algorithm to arrange character strings. Hu et al.
[19] partitions a document into a number of tables based on a set of
table quality measures. Shafait and Smith [33] detected tables from
more documents with more diverse layouts using an OCR-based
method including detecting page columns, locating table columns,
and marking table regions. Most recent approaches are based on
machine learning algorithms, particularly deep-learning-based per-
ception models. For example, Hao et al. [16] first used convolutional
neural networks to detect tables. Schreiber et al. [32] and Gilani
et al. [13] used Faster R-CNN [31] to solve this problem. Paliwal
et al. [27] developed a model based on FCN architecture [24] to
predict table and column regions pixel-wise.

Functional block detection is a recently proposed task, which,
being different from detecting whole tables, focuses on identifying
functionally consistent subunit blocks of each table [30]. As a first
attempt, Sun et al. [35] applied a top-down Bayesian-CART based
model which performs randomly row-wise and column-wise splits
to produce blocks according to data types of cells. In this context,
Koci et al. [22] discussed about building functional blocks in tables
despite their goal is to correct imperfect cell classification results.
The proposedmethod leverages rich knowledge encapsulated in cell
vectors and constructs blocks in a more general way. In addition,
the method builds blocks without knowing cell labels.

Representation Learning for Tabular Data. Among the stud-
ies of representation learning for tables, few efforts have been made
to structural embeddings, while more have focused on representing
semantics of tabular content. For example, TAPAS [17] employs
BERT’s architecture [7] to encode tables as a way to handle table-
aided NLP problems. For the same purpose, TaBERT [41], another

model built on top of BERT, is jointly trained over both textual
and tabular data. Deng et al. [6] also designed a Transformer-based
model to learn representations for tabular data, though its focus in
on knowledge extraction from tables.

On the other hand, structural representation learning is more
necessary than capturing semantic features in terms of functional
block detection. Gol et al. [14] proposed a cell embedding model
to encode individual cells considering contextual and stylistic fea-
tures. Wang et al. [36] introduced a multi-granular representation
learning model that aims at capturing both semantic and structural
information while the model requires supervised training. Our clus-
tering method uses the cell embedding model to represent blocks
in order to determine similarities.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we attempted to address the challenges in the func-
tional block detection task. Specifically, we introduced an agglom-
erative clustering-based method with different merging strategies.
In the algorithm, we apply a task-specific dissimilarity measure
that leverages cell vectors to determine block and margin dissimi-
larity, coherence and domain knowledge about data types. We then
used a sampling-based approach for selecting personalized dissim-
ilarity thresholds. There are two directions of future work. First,
the method could be extended to multiple starting points (merge
multiple pairs of blocks at each step) for better efficiency. Second,
the block detection outputs could be used as additional information
in other tasks such as table retrieval and table-based QA.

6 ACKNOWLEDGEMENTS
This material is based on research sponsored by Air Force Research
Laboratory under agreement number FA8750-20-2-10002, and the
Defense Advanced Research Projects Agency with award W911NF-
19-20271 and FA8650-17-C-7715. The views and conclusions con-
tained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory or
the U.S. Government. We thank JP Morgan for their generous sup-
port. We also thank all anonymous reviewers for their valuable
comments and suggestions.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1752

REFERENCES
[1] Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. 2017. Hinge-

Loss Markov Random Fields and Probabilistic Soft Logic. Journal of Machine
Learning Research 18, 1 (2017), 3846–3912.

[2] WenhuChen, HongminWang, Jianshu Chen, Yunkai Zhang, HongWang, Shiyang
Li, Xiyou Zhou, and William Yang Wang. 2019. TabFact: A Large-scale Dataset
for Table-based Fact Verification. In International Conference on Learning Repre-
sentations.

[3] Zhe Chen and Michael Cafarella. 2013. Automatic Web Spreadsheet Data Extrac-
tion. In International Workshop on Semantic Search Over the Web.

[4] Zhe Chen and Michael Cafarella. 2014. Integrating Spreadsheet Data via Accurate
and Low-Effort Extraction. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 1126–1135. https://doi.
org/10.1145/2623330.2623617

[5] William de Vazelhes, CJ Carey, Yuan Tang, Nathalie Vauquier, and Aurélien
Bellet. 2020. metric-learn: Metric Learning Algorithms in Python. Journal of
Machine Learning Research 21, 138 (2020), 1–6.

[6] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Ta-
ble Understanding through Representation Learning. Proceedings of the VLDB
Endowment (PVLDB) 14, 3 (2020), 307–319.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[8] Haoyu Dong, S. Liu, S. Han, Z. Fu, and D. Zhang. 2019. TableSense: Spreadsheet
Table Detection with Convolutional Neural Networks. In AAAI Conference on
Artificial Intelligence.

[9] Julian Eberius, Christoper Werner, Maik Thiele, Katrin Braunschweig, Lars Dan-
necker, and Wolfgang Lehner. 2013. DeExcelerator: a framework for extracting
relational data from partially structured documents. In ACM international confer-
ence on Information & Knowledge Management. 2477–2480.

[10] Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew
Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge. Int. J.
Comput. Vision 88, 2 (June 2010), 303–338. https://doi.org/10.1007/s11263-009-
0275-4

[11] Jing Fang, Prasenjit Mitra, Zhi Tang, and C Lee Giles. 2012. Table header detection
and classification. In Twenty-Sixth AAAI Conference on Artificial Intelligence.

[12] Basilios Gatos, Dimitrios Danatsas, Ioannis Pratikakis, and Stavros J. Perantonis.
2005. Automatic Table Detection in Document Images. In Proceedings of the
Third International Conference on Advances in Pattern Recognition - Volume Part I
(ICAPR’05). 609–618. https://doi.org/10.1007/11551188_67

[13] Azka Gilani, Shah Rukh Qasim, Imran Malik, and Faisal Shafait. 2017. Table
Detection Using Deep Learning. In 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), Vol. 01. 771–776. https://doi.org/10.
1109/ICDAR.2017.131

[14] Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely. 2019. Tabular Cell Classifica-
tion Using Pre-Trained Cell Embeddings. In 2019 IEEE International Conference
on Data Mining (ICDM). IEEE, 230–239.

[15] Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdinov. 2004.
Neighbourhood Components Analysis. In Proceedings of the 17th Interna-
tional Conference on Neural Information Processing Systems (Vancouver, British
Columbia, Canada) (NIPS’04). MIT Press, Cambridge, MA, USA, 513–520.

[16] Leipeng Hao, Liangcai Gao, Xiaohan Yi, and Zhi Tang. 2016. A Table Detection
Method for PDF Documents Based on Convolutional Neural Networks. In 2016
12th IAPR Workshop on Document Analysis Systems (DAS). 287–292. https:
//doi.org/10.1109/DAS.2016.23

[17] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno,
and Julian Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing via Pre-
training. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. 4320–4333. https://doi.org/10.18653/v1/2020.acl-main.398

[18] Y. Hirayama. 1995. A method for table structure analysis using DP matching. In
Proceedings of 3rd International Conference on Document Analysis and Recognition,
Vol. 2. 583–586 vol.2. https://doi.org/10.1109/ICDAR.1995.601964

[19] Jianying Hu, Ramanujan S. Kashi, Daniel P. Lopresti, and Gordon Wilfong. 1999.
Medium-independent table detection. In Document Recognition and Retrieval
VII, Vol. 3967. International Society for Optics and Photonics, SPIE, 291 – 302.
https://doi.org/10.1117/12.373506

[20] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. 2016. A Machine
Learning Approach for Layout Inference in Spreadsheets. In International Joint
Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Man-
agement. 77–88.

[21] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. 2017. Table Iden-
tification and Reconstruction in Spreadsheets. In International Conference on
Advanced Information Systems Engineering.

[22] Elvis Koci, Maik Thiele, Oscar Romero, andWolfgang Lehner. 2019. Cell Classifica-
tion for Layout Recognition in Spreadsheets. In Knowledge Discovery, Knowledge
Engineering and Knowledge Management. 78–100.

[23] Rémi Lebret, David Grangier, and Michael Auli. 2016. Neural Text Generation
from Structured Data with Application to the Biography Domain. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing.
1203–1213.

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 3431–3440. https://doi.org/10.1109/CVPR.2015.
7298965

[25] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008.
Introduction to Information Retrieval. Cambridge University Press. https:
//doi.org/10.1017/CBO9780511809071

[26] Daniel Müllner. 2011. Modern hierarchical, agglomerative clustering algorithms.
arXiv:1109.2378

[27] Shubham Paliwal, Vishwanath D, Rohit Rahul, Monika Sharma, and Lovekesh Vig.
2020. TableNet: Deep Learning model for end-to-end Table detection and Tabular
data extraction from Scanned Document Images. arXiv:2001.01469 [cs.CV]

[28] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing
on Semi-Structured Tables. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). 1470–1480.

[29] Minh Pham, Suresh Alse, Craig Knoblock, and Pedro Szekely. 2016. Semantic
Labeling: A Domain-Independent Approach. 446–462. https://doi.org/10.1007/
978-3-319-46523-4_27

[30] Jay Pujara, Arunkumar Rajendran, Majid Ghasemi-Gol, and Pedro Szekely. 2019.
A Common Framework for Developing Table Understanding Models. In Interna-
tional Semantic Web Conference.

[31] Shaoqing Ren, Kaiming He Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-TimeObject Detectionwith Region Proposal Networks. InAdvances
in Neural Information Processing Systems (NIPS).

[32] Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Dengel, and Sheraz Ahmed.
2017. DeepDeSRT: Deep Learning for Detection and Structure Recognition
of Tables in Document Images. In 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR), Vol. 01. 1162–1167. https://doi.org/
10.1109/ICDAR.2017.192

[33] Faisal Shafait and Ray Smith. 2010. Table Detection in Heterogeneous Documents.
In Document Analysis Systems 2010. http://doi.acm.org/10.1145/1815330.1815339

[34] Masashi Sugiyama. 2007. Dimensionality Reduction of Multimodal Labeled
Data by Local Fisher Discriminant Analysis. J. Mach. Learn. Res. 8 (May 2007),
1027–1061.

[35] Kexuan Sun, Harsha Rayudu, and Jay Pujara. 2021. A Hybrid Probabilistic
Approach for Table Understanding. In Thirty-Fifth AAAI Conference on Artificial
Intelligence.

[36] Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and Pedro A. Szekely. 2021.
Retrieving Complex Tables with Multi-Granular Graph Representation Learning.
In ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR).

[37] Jingjing Wang, Haixun Wang, Zhongyuan Wang, and Kenny Q. Zhu. 2012. Un-
derstanding Tables on the Web. In Conceptual Modeling, Paolo Atzeni, David
Cheung, and Sudha Ram (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
141–155.

[38] Yalin Wang and Jianying Hu. 2002. A Machine Learning Based Approach for
Table Detection on the Web. In Proceedings of the 11th International Conference
on World Wide Web. 242–250. https://doi.org/10.1145/511446.511478

[39] Kilian Q. Weinberger and Lawrence K. Saul. 2009. Distance Metric Learning for
Large Margin Nearest Neighbor Classification. J. Mach. Learn. Res. 10 (June 2009),
207–244.

[40] Rui Xu and D. Wunsch. 2005. Survey of clustering algorithms. IEEE Transactions
on Neural Networks 16, 3 (2005), 645–678. https://doi.org/10.1109/TNN.2005.
845141

[41] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. 8413–8426.

[42] Yanhong Zhai and Bing Liu. 2005. Web Data Extraction Based on Partial Tree
Alignment. In Proceedings of the 14th International Conference on World Wide Web.
Association for Computing Machinery, 76–85. https://doi.org/10.1145/1060745.
1060761

[43] K. Zuyev. 1997. Table image segmentation. In Proceedings of the Fourth Interna-
tional Conference on Document Analysis and Recognition, Vol. 2. 705–708 vol.2.
https://doi.org/10.1109/ICDAR.1997.620599

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1753

https://doi.org/10.1145/2623330.2623617
https://doi.org/10.1145/2623330.2623617
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/11551188_67
https://doi.org/10.1109/ICDAR.2017.131
https://doi.org/10.1109/ICDAR.2017.131
https://doi.org/10.1109/DAS.2016.23
https://doi.org/10.1109/DAS.2016.23
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.1109/ICDAR.1995.601964
https://doi.org/10.1117/12.373506
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1017/CBO9780511809071
https://arxiv.org/abs/1109.2378
https://arxiv.org/abs/2001.01469
https://doi.org/10.1007/978-3-319-46523-4_27
https://doi.org/10.1007/978-3-319-46523-4_27
https://doi.org/10.1109/ICDAR.2017.192
https://doi.org/10.1109/ICDAR.2017.192
http://doi.acm.org/10.1145/1815330.1815339
https://doi.org/10.1145/511446.511478
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1145/1060745.1060761
https://doi.org/10.1145/1060745.1060761
https://doi.org/10.1109/ICDAR.1997.620599

	Abstract
	1 Introduction
	2 Functional Block Detection
	2.1 Problem Definition
	2.2 Dissimilarity Measure
	2.3 Block Merging
	2.4 Sampling-based Threshold Selection
	2.5 The Overall Algorithm
	2.6 Convergence Analysis
	2.7 Time Complexity Analysis

	3 Experiments
	3.1 Datasets
	3.2 Experimental Setup
	3.3 Evaluation Metrics
	3.4 Main Results
	3.5 Ablation Studies
	3.6 Case Study

	4 Related Work
	5 Conclusions and Future Work
	6 Acknowledgements
	References

