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Abstract
Tables of data are used to record vast amounts of socioeco-
nomic, scientific, and governmental information. Although
humans create tables using underlying organizational prin-
ciples, unfortunately AI systems struggle to understand the
contents of these tables. This paper introduces an end-to-end
system for table understanding, the process of capturing the
relational structure of data in tables. We introduce models that
identify cell types, group these cells into blocks of data that
serve a similar functional role, and predict the relationships
between these blocks. We introduce a hybrid, neuro-symbolic
approach, combining embedded representations learned from
thousands of tables with probabilistic constraints that cap-
ture regularities in how humans organize tables. Our neuro-
symbolic model is better able to capture positional invariants
of headers and enforce homogeneity of data types. One lim-
itation in this research area is the lack of rich datasets for
evaluating end-to-end table understanding, so we introduce
a new benchmark dataset comprised of 431 diverse tables
from data.gov. The evaluation results show that our system
achieves the state-of-the-art performance on cell type classi-
fication, block identification, and relationship prediction, im-
proving over prior efforts by up to 7% of macro F1 score.

1 Introduction
Tables are one of the most common ways to organize and
present data. Due to the explosion of information pub-
lished on the Web, billions of Web tables (Cafarella et al.
2008a) covering various topic domains are available. Such
tables typically contain valuable information in a richly
structured, relational form. Tables include information from
UN surveys aiding developing nations (Division 2020), ef-
forts tracking the spread of pandemics (Atlantic 2020), and
the operation of the global economy (Bank 2020). For in-
telligent systems to have meaningful impacts, they must
be able to understand the information contained within
these tables. However, although tables are created follow-
ing established logical structures and topological arrange-
ments (Wang 1996), it is difficult for a machine to under-
stand and extract knowledge from them due to the diversity
and complexity of their layouts and contents. Figure 1 shows
such an example table. It consists of cells with various data
types and functional roles.
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Tables generally contain relational information between
different types of values, such as entities and quantitative
measurements. To understand a table, an intelligent system
must be able to understand the types of data within a table
and the relationships between them. Tables are comprised of
individual cells which contain a particular type of informa-
tion. Cells are spatially organized into regions (or blocks)
that share a common function. The relationship between
the values in a table can be expressed as a relationship be-
tween these blocks. Our table understanding system adopts
the paradigm of Pujara et al. (2019), which decomposes this
problem into three tasks: cell classification, block detection,
and layout prediction.

Many prior works have addressed the problems of table
understanding in different, piecemeal ways. Traditionally,
semantic typing approaches have sought to understand the
data types within tables, but only operate when data are
organized into well-defined, homogeneous columns. Prior
cell classification approaches have focused on identifying
functional roles at a cell level rather than capturing broader
spatial relationships between tabular regions. These meth-
ods range from using handcrafted cell stylistic, format-
ting typographic features (Koci et al. 2016; Chen and Ca-
farella 2013), or embedded vector representations to clas-
sify cells (Ghasemi-Gol, Pujara, and Szekely 2019). Koci
et al. (2019) have investigated finding larger, block struc-
tures in tables, however the primary goal of this approach
is to correct imperfect cell classification results as a post-
processing step for cell classification. To our knowledge, the
task of layout prediction in tables has not been studied in
prior work, although the broader problem of semantic mod-
eling (Rümmele, Tyshetskiy, and Collins 2018) is an active
area of research. Our work is the first to combine all three ta-
ble understanding tasks in a single, end-to-end system. Fur-
thermore, our novel neuro-symbolic method is able to cap-
ture both stylistic features and statistical patterns of prior ap-
proaches, and spatial relationships that encode how humans
organize tabular data.

Despite the availability of vast amounts of tabular data
on the Web, annotations for data types, functional regions,
and relationships within these tables are very rare. Our ap-
proach is designed for this environment by combining unsu-
pervised representation learning and higher-level symbolic
constraints that capture frequent patterns in data. Specifi-



cally, we use high-dimensional table embeddings learned
from thousands of tables in concert with a probabilistic
graphical model, probabilistic soft logic (PSL), that captures
structural patterns, such as consistency of types among con-
tiguous cells. Together, these two techniques are capable of
harnessing vast amounts of data while explicitly incorporat-
ing the intuitions human use when constructing tables.

Since previous work does not have a rich enough learning
resource that covers all aspects of these tasks, we introduce
a new benchmark dataset comprised of 431 tables down-
loaded from the U.S. Government’s open data (Data.gov
2019). These tables are in different formats such as spread-
sheets and comma-separated values, and from various
topic domains. Most existing benchmark datasets (such as
DeEx (DeEx 2013), SAUS (SAUS 2014) and CIUS (CIUS
2019)) consist of only Excel files, are from narrow domains
and cover only cell functional types. Cross validation shows
that the proposed system outperforms other baseline ap-
proaches in most cases. The results align with our hypothe-
ses: the pre-trained cell embeddings encapsulate useful in-
formation of cells and probabilistic constraints can help en-
force the logical consistency of prediction. Accordingly, the
neuro-symbolic approach gets the best of both worlds. The
idea of neuro-symbolic combination could potentially be ap-
plied to investigate other tasks for tables such as data trans-
formation and relation extraction. In addition, the blocks and
the relationships extracted by our system could potentially
be used for automated tabular analysis such as finding im-
portant patterns from a table (Zhou et al. 2020).

We summarize our primary contributions:

• An integrated system solves three table understanding
tasks inspired by human organization of tables: cell clas-
sification, block detection and layout prediction.

• A hybrid neuro-symbolic approach leveraging the
strength of embedded cell representations with constraints
capturing human layout patterns.

• A new and richer benchmark dataset with annotations for
three tasks to support ongoing research in table under-
standing.

2 Preliminaries
2.1 PSL
Probabilistic Soft Logic (Bach et al. 2017) is a probabilistic
inference framework. A PSL model is defined on a set of
predicates and a set of first-order logic rules consisting of
the predicates. Here is an example PSL rule:

w : P1(X,Y ) ∧ P2(X,Z)⇒ P3(Y,Z)

where w is the weight of this rule, P1, P2 and P3 are three
predicates, and X , Y and Z are variables. During inference,
the variables are grounded by constants. PSL uses hinge-
loss Markov Random Fields (MRFs) to efficiently solve the
convex optimization problem.

PSL has been successfully applied to solve different tasks
such as knowledge base completion (Chen et al. 2019), rec-
ommender systems (Kouki et al. 2015), and entity resolu-
tion (Kouki et al. 2017).

Figure 1: An example table with colored regions of cells.

2.2 Cell Embeddings
Cell embeddings are vector representations of tabular cells.
Ghasemi-Gol, Pujara, and Szekely (2019) proposed to use
neural networks to learn the cell embeddings. Each embed-
ding consists of two parts, i.e. the contextual embedding cap-
tures the semantic information of the cell content, and the
stylistic embedding encapsulates the stylistic features of the
cell. There are different ways to capture the contextual and
stylistic information. Specifically, the authors exploit pre-
trained language models to identify the local context of cells
and auto-encoders to encode the stylistic features. Accord-
ingly, in our system, we use their pre-trained cell embedding
model learned from thousands of tables.

3 Problem Definition
In this section, we reformalize tabular data and three table
understanding tasks introduced in (Pujara et al. 2019). A ta-
ble is a matrix T = {vi,j |1 ≤ i ≤ N, 1 ≤ j ≤ M} where
N is the number of rows, M is the number of columns, and
vi,j is the cell in the ith row and the jth column.

3.1 Cell Classification
The goal of cell classification is to assign a label to each
cell. In most prior work, cell classification is to assign each
cell a label indicating the functional role the cell presents in
the data layout. This process should consider both the cell
information and context information of neighboring cells or
even the whole table. In this paper, we classify cells only
based on cell contents without considering the contextual
information. We leave the task of identifying cell functional
roles to the block detection task.

There are different ways to classify cell contents. Since
the content usually is a sequence of characters, the most ba-
sic types can be Number, String, Datetime and Empty. How-
ever, these types are not informative enough. For example,
knowing a cell contains a string is not helpful enough for un-
derstanding the table. In this paper, we use more fine-grained
semantic data types. A number can be a Nominal, Cardinal
or Ordinal, and a string can be the name of a Person, an Or-
ganization, a Location, or Other string. Particularly, this task
can be even challenging for human. For example, a zip code
is a Nominal but can be easily identified as a Cardinal, and
a year is a Datetime but can also be classified as a Cardinal .



Figure 2: Our system architecture.

3.2 Block Detection
The goal of block detection is to identify regions of cells
playing the same functional role. We refer to each such a re-
gion as a block. We define a block as a rectangle denoted as
〈T, L,B,R〉 where the four indices represent the Top row,
Left column, Bottom row and Right column of the block, re-
spectively. The smallest block is a single cell and the largest
block is the table itself. When we treat each cell as a block,
the system eventually solves the cell functional type classi-
fication. However, our goal is to identify regions as large as
possible such that cells in the same region indeed play the
same functional role. As shown in (Koci et al. 2019), con-
sidering blocks rather than individual cells could potentially
reduce the number of misclassifications.

We consider the following functional roles: Metadata de-
notes the global information of the table (such as the ti-
tle and source); Header indicates attribute names of the ta-
ble columns; Attribute presents attribute names of the table
rows; and Data shows the main content of the table.

3.3 Layout Prediction
Given the blocks identified from the previous task, the goal
of layout prediction is to determine the relationships be-
tween blocks. Each pair of blocks will be assigned a rela-
tionship. We consider the following four relationships: Sub-
set of denotes that a block shows the subcategory infor-
mation of another block (usually between two Header or
Attribute blocks); Header of indicates a block to contain
the header information of another block (usually between
a Header and a Data block); Attribute of marks a block to
record the attribute information of another block (usually be-
tween an Attribute and a Data block); and Global Attribute
marks a block containing the global information of another
block (usually between a Metadata block and another block).

4 Method
We introduce our system for table understanding, illustrated
in Figure 2. In specific, the system takes a table as the in-
put and uses a pre-trained cell embedding model to repre-
sent each cell that is to be processed by several downstream
predictors. More specifically, the cell classifier seeks to pre-
dict cell data types and the block detector uses both the em-
beddings and the data types to generate blocks. The layout
predictor then predicts relationships between blocks. The
cell classifier, block extractor and layout predictor model the
three corresponding tasks as PSL problems. Our system de-
pends on the computational performance of PSL. Empiri-
cally, the inference of PSL scales linearly with the number
of potentials and constraints (Bach et al. 2017) which is at
most linear to the number of cells in our problem.

4.1 Cell Classifier
The cell classifier operates in two processes. In training
phase, a statistical learning model learns to predict a can-
didate data type using cell embeddings. In inference phase,
a PSL model enforces constraints between the data types.

To model this task, we first identify several simple fea-
tures based on cell content, such as IsNumber, IsDate
and IsEmpty, indicating if the content could be parsed as
a number, a date/time, or other special cases such as empty
cells or reserved values such as “n/a”, respectively. We then
extract dependencies between the features and data types.
The PSL model consists of a set of rules presenting such de-
pendencies. In our model, we are interested in predicting the
cell data types (DataType). Some example rules are:

IsDate(C)⇒ DataType(C, “datetime”)

CELabel(C, T )⇒ DataType(C, T )

The first rule expresses: if the cell content C is success-
fully parsed as a datetime, we could confidently label it as
“Datetime”. CELabel shows the candidate data type pre-
dicted by the statistical learning model.

The above implication rules are introduced to avoid cell
embeddings being overfitted and making mistakes in obvi-
ous situations. However, the above rules are not always suf-
ficient to differentiate data types from each other, especially
for numbers. For example, “2020” could be a number indi-
cating a quantity or a specific year. To alleviate this issue,
we also introduce several conjunctive rules. For example:

IsNum(C)∧!IsInt(C)⇒ DataType(C, “cardinal′′)

HasAlpha(C)∧!HasNum(C)⇒!DataType(C, “cardinal′′)

OneWord(C) ∧ HasNum(C)⇒!DataType(C, “person′′)

These rules are derived from constraints upon how hu-
mans express different types of cell content. The first two
rules demonstrate how numbers exist in tables. Usually,
floating (not integer) numbers are only used to show quanti-
ties, such as average numbers of people and average scores
of classes, which are cardinals. In addition, cardinals always
contain some numeric characters. The third rule shows a per-
son’s name usually is not a single token with numeric values.
We note that the above rules are only a subset of rules used
in the system. We provide the full list of rules in Appendix.

4.2 Block Detector
The block detector takes the cell data types and cell embed-
dings as inputs to identify blocks, and assign each block
a functional label. This component operates in three steps:
generating candidate blocks, enforcing probabilistic con-
straints, and coalescing blocks.

Generating Candidate Blocks Different from the region-
based approach (Koci et al. 2019) that groups adjacent cells
into rectangular regions, we introduce a top-down approach.
It starts from a whole table and recursively splits the table
into smaller blocks. This idea is inspired by the Bayesian
CART model which constructs a decision tree by recursively
partitioning a space into subsets (Chipman, George, and Mc-
Culloch 1998). Figure 3 demonstrates such a decision tree.



Figure 3: An illustration of block generation. T is the orig-
inal table, B1, B2, B3 and B4 are non-overlapping blocks
in the table (left) and leaf nodes in the decision tree (right).

Instead of constructing the tree greedily, Chipman et
al. introduced a Markov Chain Monte-Carlo (MCMC) ap-
proach to finding the tree. Formally, we start from the table
T , at each step i, for each active node Bij , we choose to
either split this node into two children nodes or stop at this
node with the splitting probability psplit. If a node is cho-
sen to be split, we select the row/column to split following
the rule distribution prule, otherwise we stop splitting this
node and it becomes a leaf node. For example, in fig. 3, T
is split into B1 and another node. B1 is not split so it be-
comes a leaf node while the other node is further split into
two extra nodes. Each leaf node becomes a candidate block
in our problem. Following this process, the system generates
N such trees and randomly select one tree, with the weight
function Went, to finalize candidate blocks.

Algorithm 1 shows the details. We call the function
SampleATree to generate candidate blocks. Similar to the
Bayesian CART model, we set the splitting probability to be
psplit(d) =

1
(1+d)β

where β is a hyperparameter and d is the
depth of the node. A larger β indicates a smaller tree.

We make use of the cell data types provided by the cell
classifier to decide the rule distribution. At node Bi, sup-
pose it can be split into two children nodes Bi1 and Bi2,
the data type distributions of Bi1 and Bi2 are Di1 =[
d11, d

1
2, · · · , d1k

]
and Di2 =

[
d21, d

2
2, · · · , d2k

]
where k is

the number of data types. We set the rule distribution to be

prule(Bi1, Bi2) = λ · e
− λ

|Di1−Di2|
2
2 where λ is a hyperpa-

rameter. This is designed based on the assumption that a split
which makes the distributions more diverse is more likely to
be chosen. We apply the exponential family λ · e−λ to make
the difference between the distributions more significant.

We use the entropy Went to determine the weight of a

tree. Went(B) = λ · e
− λ∑

b:B

(
− |b|∑

b′:B |b
′|
∑
t p
t
b
log pt

b

)
where B

is a set of blocks , b is a block, |b| is the size (area) of b, and
ptb is the ratio of the cells with the data type t in b. The λ
here is the same as the λ in prule.

Enforcing Probabilistic Constraints In the second step,
we assign a functional label to each candidate block using a
PSL model. Same as the cell classifier, we perform this step
with two components: a statistical learning model that takes
a cell embedding as an input to predict a functional label
for each cell, and a PSL model that enforces probabilistic
constraints. A set of example rules are listed below:

Algorithm 1: Candidate Block Generation
1 Function Split(block):
2 queue←− {(block, 0)}; blocks←− {};
3 while queue 6= ∅ do
4 (〈t, b, l, r〉 , d)←− queue.get()

// t, b, l, and r are indices.
5 Randomly select a number v within [0, 1]
6 if v < psplit(d) then
7 Randomly split 〈t, b, l, r〉 into B1 and B2

using prule.
8 queue.push((B1, d+ 1))
9 queue.push((B2, d+ 1))

10 else
11 blocks.add(〈t, b, l, r〉)

12 return blocks;

13 Function GenerateATree(T , types):
14 row blocks = Split(T ); // Row-wise
15 blocks←− ∅;
16 foreach B in row blocks do
17 blocks.union(Split(B)) // Column-wise

18 return blocks;

19 Function SampleATree(T , types, N):
20 trees←− ∅
21 foreach 1 ≤ i ≤ N do
22 trees.add(GenerateATree(T, types))

23 return Sample a tree from trees using Went.

CELabel(B,L)⇒ BT(B,L)

FirstRow(B)⇒ BT(B, ”header”)

BT(B,L) indicates the possibility that block B is as-
signed label L. Same as the cell classifier, CELabel shows
how the block detector uses cell embeddings. The statistical
learning model assigns each cell a label. Since a block may
have more than one cell, CELabel(B,L) reveals the possi-
bility that block B is assigned label L. This corresponds to
the ratio of the number of cells assigned label L over the to-
tal number of cells in B. The second rule expresses: blocks
on the first row usually is a Header block.

In addition to the simple rules listed above, we also ap-
ply several conjunctive rules that fuse the inherent positional
constraints within the table layouts. For example:

SameRow(B1, B2) ∧ BT(B1, ”header”)⇒ BT(B2, ”header”)

Abv(B1, B2) ∧ Abv(B2, B3) ∧ BT(B1, C) ∧ BT(B3, C)

⇒ BT(B2, C)

The first rule indicates that if a block is a Header block,
blocks that on the same row as this block are also Header
blocks. The last rule takes neighboring blocks into consider-
ation. If the neighbor above and the below it have the same
label, it should also be assigned this label. These conjunctive
constraints exploit the power of collective classification that
probabilistic models perform.



Block Coalescing After assigning labels to the candidate
blocks, we apply a post-processing step to merge small
blocks into large blocks. In this step, we first merge neigh-
boring blocks if they have the same top row, bottom row
and labels. Similarly, we then merge neighboring blocks if
they have the same left column, right column and labels. The
block detector finally passes the merged blocks to the layout
predictor. We design this step to resolve the issue of over-
partitioning and produce better blocks.

4.3 Layout Predictor
The layout predictor is the last component of our system. It
predicts a relationship between each pair of blocks identified
by the block detector. We model the task as a PSL problem
utilizing relative positional relationships between the blocks.
A set of example rules are listed below:

Adj(B1, B2) ∧ BT(B1, ”data”) ∧ BT(B2, ”data”)

⇒ Rel(B1, B2, ”empty”)

Hrz(B1, B2) ∧ BT(B1, ”attr”) ∧ BT(B2, ”data”)

⇒ Rel(B1, B2, ”attribute”)

These rules illustrate our hypotheses about positional re-
lationships between blocks. If two data blocks are neighbors,
they might not have any special relationship. If two blocks
are horizontally aligned, one is an attribute block and the
other one is a data block, the attribute block might reveal
attributes of the data within the data block.

5 Datasets for Table Understanding
5.1 Existing Datasets
There are three main datasets DeEx, CIUS and SAUS de-
signed for evaluating cell functional type classification.
The DeEx dataset was collected in the DeExcelerator
project (Eberius et al. 2013) and contains 457 annotated
sheets. The CIUS dataset was originally from the Crime In
the US (CIUS) database and contains 268 sheets. The SAUS
dataset was downloaded from the U.S. Census Burea (Chen
and Cafarella 2014) and contains 210 sheets. Both the CIUS
and SAUS datasets were annotated by Ghasemi-Gol, Pujara,
and Szekely (2019). We evaluate our approach on all these
three datasets for the task of block detection. These three
datasets are cell-level annotations based on functional roles.

5.2 A New Dataset from Data.gov
The existing datasets, designed for evaluating cell functional
type classification, have relatively narrow domains and fo-
cus only on Excel files. To evaluate the three aforementioned
table understanding tasks, we introduce a new dataset DG.
We downloaded 1837 files from the U.S. Open Data website
(data.gov). These files are from different topic domains such
as agriculture, climate, ocean and ecosystem, and are in dif-
ferent formats (i.e. csv and Excel). We sampled 431 tables
from these files and annotated them for the three table un-
derstanding tasks. To show inter-annotator agreements, we
ask two annotators to independently annotate 25 tables and
evaluate the Cohen’s kappa coefficients (McHugh 2012) for

three tasks. The results are 0.937 for cell classification, 0.960
for block deteection, and 0.936 for layout prediction, which
indicate the good reliability of the annotations. Specifically,
for block detection, we align the blocks from annotator A
with those from annotator B and then compare the labels.

6 Evaluation
In this section, we present the experimental evaluation of
the proposed system based on the four datasets. In the pro-
cess of creating PSL rules, we randomly selected 10 tables
from each dataset as a rule development set. These tables
are not included in any training and testing. In all experi-
ments, we perform 5-fold cross validation on the rest of the
tables: for each dataset, we randomly split the tables into
5 folds, train/validate a model using 4 folds and test on 1
fold. For the 4 folds, we randomly split the tables with 9:1
ratio into training and validation sets. The results are aver-
aged on the 5 test folds. Each cell embedding consists of
40-dimensional stylistic features and 512-dimensional con-
textual embedding.

6.1 Cell Classification

As described in Section 3.1, we evaluate our cell classifier
on the DG dataset. Each cell is classified into 1 of the 9
data types: empty (Emp), cardinal (Card), Nominal (Nom),
ordinal (Ord), datetime (Date), location (Loc), organiza-
tion (Org), person (Per), and other string (Str). In the PSL
model, we leverage 32 logical rules.

We compare our system with the following baselines:
1) Random Forest (RF): We use the RandomForest clas-
sifier in scikit-learn library (Buitinck et al. 2013). It
takes cell embeddings as input the predict a cell data
type. We select n estimator among [100, 300], max depth
among [5, 50, None], min sample split among [2, 10] and
min samples leaf among [1, 10]. We use the bootstrap mode
with balanced sub-sampling. 2) Conditional Random Field
(CRF): CRFs are a type of PGMs, which takes the con-
text (neighboring cells in tabular data) into consideration. In
this experiment, it uses a feature set introduced in in (Chen
and Cafarella 2013) to make predictions. We choose 2-
dimensional CRF to represent row-wise and column-wise
neighborhood interactions. We use GridCRF class from
the pystruct library (Müller and Behnke 2014). We set the
max iter to be 500, tolerance to be 0.01 and select c range
among [0.01, 0.1, 1.0]. 3) Multi-layer Perceptron (MLP)
We use the pytorch library (Paszke et al. 2019) to create a
two-layer neural network with the Rectified Linear activa-
tion function (ReLU). It also takes cell embeddings as input.
We set batch size to be 32, learning rate to be 0.0001, and
epoch to be 50. We use cross entropy loss.

Results: Table 1 shows the results of this experiment. For
both RF and MLP, the PSL model improves over their re-
sults. The results demonstrate that the logical rules are able
to provide useful high-level constraints between data types
and cell-level features. Compared to CRF, it is more flexi-
ble to enforce explicit constraints in PSL. For each table, the
average running time of PSL is 10 seconds.



Table 1: Data type classification results (F1 scores) on DG.
Avg is the macro F1 score (%) ± the standard deviation.

Emp Crd Str Dat Loc Org Ord Nom Per Avg

CRF 81.9 82.5 42.4 56.2 34.4 16.8 0.0 36.0 1.3 39.1±1.8
MLP 84.5 85.6 69.1 59.3 54.9 46.8 0.0 52.0 1.2 50.4±5.4
RF 85.0 84.4 73.2 61.4 65.2 55.5 0.3 53.4 39.3 57.5±4.7

PSL
(MLP)

96.5 88.3 70.2 77.8 55.8 43.3 0.3 52.4 1.0 54.0±3.1

PSL
(RF)

96.8 87.8 74.3 78.4 66.1 52.5 0.2 53.0 31.7 60.1±3.2

6.2 Block Detection
We use 19 rules in the PSL model with the same weight. We
conduct two experiments. First, since the existing datasets
are for cell role type classification, however, our system
identifies block role type. To compare with baseline mod-
els on these datasets, we assign each cell a functional role
according to the predictions for blocks. Second, we mea-
sure how precisely predicted blocks are aligned with ground-
truth blocks. We borrow the idea of Error-of-Boundary
(EoB) proposed in Dong et al. (2019):

EoB(Bgt, Bp) =

max
(
|Bgt

t −Bp
t |, |B

gt
b −Bp

b |, |B
gt
l −Bp

l |, |B
gt
r −Bp

r |
)

where Bgtt , Bgtb , Bgtl , and Bgtr are the top row, bottom row,
left column, and right column of the ground-truth blockBgt.
The annotations are same for the predicted blockBp. Since a
table may have several blocks, instead of evaluating a single
block, we use averaged EoB over all blocks:

EoBavg =
∑

1≤i≤N,1≤j≤M

1

|Bgtij ∩Bpij |
EoB(Bgtij , Bpij )

where N is the number of rows, M is the number of
columns, Bgt

ij

is the block that the cell on the ith row and
jth column belongs to. Same for Bp

ij

.
In the system, we set the number of sample trees to

be 50, select the α among [0.01, 0.05, ] and λ among
[5, 10]. Following (Ghasemi-Gol, Pujara, and Szekely 2019),
we compare the system with the following baselines: 1)
Random Forest (RF): In the first experiment, it takes
cell embeddings as input to predict a role type for each
cell. We also use the RandomForest class from scikit-
learn. We select n estimator among [100, 300], max depth
among [5, 50, None], min sample split among [2, 10] and
min samples leaf among [1, 10]. We use the bootstrap mode
with balanced sub-sampling. 2) Conditional Random Field
(CRF): We follow the instructions in (Chen and Cafarella
2013) to implement the linear CRF. We use the ChainCRF
class from the pystruct library. We set max iter to be 1000,
tol to be 0.01, and select C range from [0.1, 0.3, 0.5, 0.7,
1.0]. We use the same feature set as is used in the CRF
model in the previous experiment. The CRF takes the inter-
dependencies between rows and predict the functional type
(only metadata, data and header) of each row. For data rows,
cells with actual numbers are classified as data and other
cells are attributes. 3) Recurrent Neural Network (RNN):

Table 2: Results of block detection models.

(a) Cell functional type classification results. The annotations are
same as those in table 1. All models use the outputs of the PSL
(RF) cell classifier.

MD DT HD AT Avg

C
IU

S

CRF 96.5 67.6 94.9 36.8 73.9±8.9
RNN 99.5 99.3 97.4 90.5 96.7±4.1
RF 95.9 99.7 88.9 97.0 95.4±0.6
PSL(RNN) 94.8 99.2 97.8 89.3 95.3±4.1
PSL(RF) 93.6 99.7 96.0 97.6 96.7±1.1

SA
U

S

CRF 80.7 82.2 95.7 38.2 74.2±5.8
RNN 94.3 97.5 84.1 79.5 88.9±2.3
RF 79.1 98.6 78.8 91.1 86.9±4.0
PSL(RNN) 87.6 97.8 86.7 79.5 87.9±1.4
PSL(RF) 80.6 99.0 85.4 92.8 89.4±2.5

D
eE

x

CRF 35.6 55.7 48.0 1.7 35.3±6.9
RNN 33.8 96.1 47.2 39.5 54.2±5.9
RF 53.4 98.4 51.0 26.5 57.3±2.0
PSL(RNN) 38.5 97.2 53.5 44.9 58.5±8.0
PSL(RF) 65.4 98.8 60.5 26.0 62.7±3.9

D
G

CRF 41.3 53.1 94.1 34.8 55.9±9.3
RNN 45.4 95.9 82.9 78.8 75.8±4.3
RF 74.0 95.8 80.7 77.8 82.1±2.5
PSL(RNN) 69.9 95.7 89.2 77.4 83.1±5.2
PSL(RF) 77.2 95.7 91.4 77.4 85.4±4.8

(b) Average EoB scores of all models on the DG dataset.

Method CRF RNN RF PSL (RNN) PSL (RF)

EoBavg 5179 24192 59403 2828 1995

It is the classification model proposed in (Ghasemi-Gol, Pu-
jara, and Szekely 2019). We set the epoch to be 50 and learn-
ing rate to be 0.0001. In the second experiment, we use the
region-based approach from (Koci et al. 2019) to create
blocks: it builds row-label intervals (RLI) (i.e. neighboring
cells with the same label on the same row), and then merge
RLIs in adjacent rows into regions.

Results Table 2a shows the results of the first experiment.
The PSL model improves the performance over baseline
classifiers (i.e. RF and RNN) using cell embeddings. The
reasons are: 1) the rectangular block representations guar-
antee the cells within a block have the same type, and 2)
the explicit constraints between positional features and the
functional types, and between the functional types them-
selves further assist the performance. The major challenge
that PSL leads to lower accuracy in some cases (such as MD
in DeEx and AT in DG) is that the method uses data type
distributions to decide the division of a block. If two adja-
cent rows/columns have very similar data type distributions,
they are less likely to be split.

Table 2b presents the results of the second experiment. In
terms of the average EoB, our model shows better results.
We present the results of the example table of Figure 1 in



(a) The result of the RF model (using cell embeddings only).

(b) The result of the PSL model.

Figure 4: The block detection results of the table in Figure 1.

Figure 4 to demonstrate the reason. The RF (similar for CRF
and RNN) model depends only on the cell classification re-
sults so that the misclassified cells scattered over the whole
table make the generated blocks small and affect the EoB.
For a table in CIUS, SAUS, DeEx, and DG, the average run-
ning times of PSL are 39, 3, 17, and 7 seconds, respectively.

6.3 Layout Prediction
We use 15 logical rules in the system. We evaluate the per-
formance of the layout predictor on the DG dataset. We use 5
aforementioned relationships: empty (EP), header of (HO),
attribute of (AO), global attribute (GA) and supercategory
of (SC). We compare the predictor with the following two
baselines: 1) Random Forest (RF): For every two blocks,
we use a few manually crafted features: their functional la-
bels (predicted by the block detector), and several relation-
ships between blocks ( below, above, left right, adjacent, and
overlap). We use the RandomForest from the scikit-learn li-
brary. We select n estimators among [100, 300], max depth
among [5, 50, None], min samples split among [2, 10] and
min samples leaf among [1, 10]. 2) Conditional Random
Field (CRF) We construct a graph CRF for this task. If we
treat each block as a node and the relationship between two
blocks as an edge, the above features are features associ-
ated with edges. We use the EdgeFeatureGraphCRF from
the pystruct library. We set max iter to be 50, tol to be 0.01,
and select C range among [0.01, 0.1],

Results We use the blocks generated by the block detector

Table 3: Layout prediction results on the DG dataset. All
models use the outputs of the PSL (F) block detector.

Method EP HO AO GA SC Avg

RF 81.7 1.1 2.1 22.7 0.0 21.5±1.2
CRF 88.5 33.7 32.2 40.0 0.0 38.9±3.1
PSL 89.6 70.3 32.8 43.0 25.6 52.3±3.4

to run different layout prediction methods. For each block b,
we match it with the ground-truth block b′ which shares the
most overlapping cells with b. All predicted relationships for
b are added to b′ and compared with the ground-truth rela-
tionships. Table 3 shows the results. The PSL model per-
forms better than the compared models in most cases. For
each table, the average running time of PSL is 0.4 seconds.

7 Related Work
In recent years, a large amount of research efforts seek to
solve different tasks for automated processing tabular data,
such as table detection, table classification, and data trans-
formation. Wang and Hu (2002); Wang et al. (2012); Fang
et al. (2012) focus on extracting tables from HTML pages,
document images and PDFs, and Dong et al. (2019) lever-
ages the convolutional neural networks (CNN) to develop an
end-to-end framework for spreadsheet table detection. Ca-
farella et al. (2008b), Crestan and Pantel (2010) and Eberius
et al. (2015) introduced content, lexical, global and local
features, and Nishida et al. (2017) proposed a hybrid ar-
chitecture TabNet using recurrent neural networks and CNN
to encode tabular data, to perform table type classification.
The task of tabular data transformation is transform tabu-
lar data into more formal tables, i.e. relational databases. Su
et al. (2017); Shigarov et al. (2016); Dou et al. (2018) used
either engineered or automatically inferred features to con-
struct rule-based engines.

8 Conclusions and Future Work
In this paper, we proposed an end-to-end system for solv-
ing three table understanding tasks, i.e. cell classification,
block detection and layout prediction. Our system exploits
the rich information within cell embeddings as well as logi-
cal constraints following the principles of the layouts of the
tabular data. We introduced probabilistic rules and used the
probabilistic inference framework PSL to enforce the rules.
We experimentally evaluated our system and showed the re-
sults. The output of our system can potentially be used for
solving several downstream tasks such as semantic model-
ing, table summarization, and question answering on tables.
For example, in semantic modeling, each identified block
can be treated as an attribute and the relationships between
blocks are helpful for predicting better semantic models.
In the current system, we use the distributions of cell data
types to generate candidate blocks. Alternative measures and
sampling strategies could also be leveraged. In addition, the
idea of combining embeddings and probabilistic constraints
could potentially be used for solving the layout prediction
and other tasks related to tables.
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