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Abstract

Error detection is one of the most important steps
in data cleaning and usually requires extensive hu-
man interaction to ensure quality. Existing super-
vised methods in error detection require a signif-
icant amount of training data while unsupervised
methods rely on fixed inductive biases, which are
usually hard to generalize, to solve the problem.
In this paper, we present SPADE, a novel semi-
supervised probabilistic approach for error detec-
tion. SPADE introduces a novel probabilistic ac-
tive learning model, where the system suggests
examples to be labeled based on the agreements
between user labels and indicative signals, which
are designed to capture potential errors. SPADE
uses a two-phase data augmentation process to en-
rich a dataset before training a deep-learning clas-
sifier to detect unlabeled errors. In our evaluation,
SPADE achieves an average F1-score of 0.91 over
five datasets and yields a 10% improvement com-
pared with the state-of-the-art systems.

1 Introduction
Error detection is a major challenge in data cleaning and
plays an essential role in ensuring data quality for down-
stream tasks. Traditionally, data curators are in charge of
manually performing error-detection tasks. Such manual er-
ror detection is generally done based on human knowledge
and experience. A data error can be defined as “a devi-
ation from its given ground truth” [Abedjan et al., 2016].
The deviations can come from different criteria such as rar-
ity in values, misspellings, or uncommon formats and may
be detected using indicative signals. In practice, error detec-
tion is an iterative process where errors detected by curators
need to be reviewed by other experts [Mahdavi et al., 2019;
Rekatsinas et al., 2017].

In recent years, much research effort on learning-based
error-detection methods [Heidari et al., 2019; Neutatz et al.,
2019; Mahdavi et al., 2019; Krishnan et al., 2016] has fo-
cused on reducing a data curator’s workload by automating or
semi-automating the detection task. Such methods leverage
machine-learning techniques to characterize the properties of

labeled errors and apply learned models to detect unseen er-
rors. However, learning-based error-detection systems re-
quire a significant amount of training data to achieve satisfac-
tory performance, especially deep-learning-based ones [Hei-
dari et al., 2019]. Labeling errors in a large and noisy dataset
is time-consuming and can be a burden for users to train their
models. On the other hand, unsupervised approaches [Wang
and He, 2019; Huang and He, 2018; Dallachiesa et al., 2013;
Mariet et al., 2016], which do not need labeled data, rely
heavily on a fixed inductive bias for detection. However, val-
ues that are erroneous in one database may be normal in an-
other database. Therefore, existing methods that work intrin-
sically in one domain often fall short of adapting extrinsically
to other domains [Mahdavi et al., 2019].

To cope with the lack of training data and support more
generalizable error detection, we present a novel semi-
supervised error detection system called SPADE ♠. As ma-
chine learning techniques have been proven to have high per-
formance in error detection [Heidari et al., 2019; Neutatz et
al., 2019], we integrate a machine learning classifier with an
active learning process to reduce the amount of labeled data
and an accompanying data augmentation algorithm to synthe-
size additional training data automatically.

SPADE introduces an active learning process where it ini-
tially improvises a set of signal functions to detect poten-
tial errors. We categorize our signal functions into two cat-
egories: internal and external. Internal signal functions an-
alyze values within data attributes to determine the outliers.
External signal functions leverage external knowledge, such
as pre-trained language models and Web table data, to iden-
tify other errors. In the active learning process, the reliability
scores of signal functions are equally initialized and continu-
ously updated based on their agreement with user labels us-
ing Probabilistic Soft Logic (PSL) [Bach et al., 2017]. By
accepting user feedback and progressively optimizing our ac-
tive learning model, we can reduce the number of labeled ex-
amples required and improve our system’s generalization.

To generate more training data, SPADE includes a two-
phase data-augmentation module where it propagates the la-
bels of user-labeled examples based on the similarity of sig-
nals and PSL inference scores and generates synthetic exam-
ples with string transformation learned from user-corrected
values. The combination of user-labeled and synthetically-
augmented data ensures that our deep learning classifier has
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GDP
per capita

Voluntary
expenditure

Household
income

Passenger
transport

41 450 2.3 -0.5 138 643
43 746 2.3 | 1.1 132 125
44 720 2.3 0.4 134 954 e

Table 1: Belgium statistical profiles dataset

enough training data to achieve high performance, as shown
in our evaluation.
Contribution. The main contribution of this paper is our
semi-supervised solution for error detection that can accu-
rately detect errors with limited user labels. Our solution pro-
vides two key technologies: (i) A novel active-learning pro-
cess that uses probabilistic models to model the agreements
between user labels and error signals to adaptively identify
the actual errors; (ii) A two-phase data augmentation algo-
rithm, which propagates user labels based on signal functions
and generates synthetic errors using string transformations, to
obtain enough training data for deep classification training.

2 Motivating Example
We provide a motivating example to explain how SPADE
simulates human error detection approaches under three dif-
ferent scenarios. In this example, we use a snippet of a
real-world dataset about Belgium statistical profiles from the
Organisation for Economic Co-operation and Development
(OECD) library,1 as shown in Table 1.
Scenario 1. Suppose that we want to detect errors in the
GDP per capita column. It is easy to see that all GDP per
capita column values have the same format, and their values
seem to be comparable. Therefore, using only internal in-
formation, users may conclude that there is no error in the
column. However, with external information, curators may
notice that the pattern like “XXX XXX” (where X represents
a digit) for numbers is uncommon since numbers are either
stored in “XXX.XXX” or “XXX,XXX” formats. In prac-
tice, these “XXX XXX” numbers should be flagged as errors
for curation before being used in downstream tasks. In this
case, we can learn from our Web table corpora that the pat-
tern “XXX XXX” rarely appears and can conclude that values
with “XXX XXX” pattern are more likely to be errors.
Scenario 2. We can look at column Voluntary expenditure
where cell values that end with “|” are rare cases in the col-
umn and more likely to be errors. In this scenario, we can use
an internal signal function that computes the format pattern
frequency to detect the “2.3 |” since it is a rare pattern.
Scenario 3. There are situations when the initial potential
errors are incorrect. For example, in the column Household
disposable income, value “-0.5” is a potential error based on
internal signals since it is the only negative value. However,
based on user verification, “-0.5” is indeed a normal value. To
allow our active learning model to handle these cases, we de-
velop a probabilistic graphical model to model the agreement
between our signals and user feedback.

1https://www.oecd-ilibrary.org/economic

3 Learning to Detect Errors
In this section, we define the error detection problem and dis-
cuss our approach in SPADE to solve the problem.

3.1 Problem Definition
In this paper, we focus on solving the error detection problem
where errors can be found by examining each attribute inde-
pendently since the majority of errors found in data sources
are single-attribute errors. Errors that require examining the
dependency between columns to detect are also important but
are not considered in this paper. We can define the problem
of single-attribute error detection as:

Definition 1 (Single-attribute Error Detection). Given a data
attribute A with n cells {A[1], A[2], ..., A[n]}, find a label
vector L of size n so that L[i] = 0 if A[i] is an error and
L[i] = 1 if A[i] is a normal cell value.

Using the above definition, we can also formulate error
detection as a binary classification where normal values are
positive examples and errors are negative.

For the rest of the paper, when we refer to error detection in
a data source with n attributes {a1, a2, ..., an}, we consider
it as a set of n multiple error detection sub-problems where
each sub-problem targets a single attribute ai. Also, since
attributes usually correspond to columns in tables, we will
use the two terms interchangeably throughout the paper.

3.2 Overall Approach
The main purpose of our active learning process is to iden-
tify representative examples quickly for user labeling. In
SPADE, it can be achieved by using signal functions and
the PSL model. Signal functions cover a set of indicative
signals that can detect potential errors such as rarity in val-
ues, misspellings, or uncommon formats. The PSL model as-
signs a reliability score for each signal function and updates
it throughout the active learning process based on user feed-
back. By focusing only on reliable signal functions, SPADE
can select representative errors for user labeling in a large and
noisy dataset.

As shown in Section 3.1, the error detection problem can
be formulated into a binary classification problem. Since the
number of labeled cells in active learning is limited, SPADE
includes a two-phase data augmentation algorithm that en-
riches both positive and negative examples to ensure that our
binary classifier has enough training data.

Figure 1 shows the overall workflow in SPADE. In the fig-
ure, blank circles represent unlabeled cells, while color-coded
circles represent normal (blue) and erroneous (orange) cells.
The system starts by initializing the set of unlabeled cells. For
each active iteration, SPADE first computes the signal values
for each cell (Step 1). Next, these signal values are fed into
our PSL model, and the model infers the error probabilities
for all cell values. SPADE selects the cell with the highest
error probability A[i∗] for user labeling (Step 2a). The label
is then used to update our PSL model (Step 2b). The loop
repeats until SPADE reaches the number of active iterations.
The set of labeled cells are fed to our two-phase data augmen-
tation algorithm (Step 3 and 4). The augmented data are then
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Figure 1: System Overview

used to train a binary classifier (Step 5) to detect unlabeled
errors (Step 6).

3.3 Signal Functions
SPADE contains two different sets of signal functions that
capture internal and external signals for potential errors. We
define a signal function as follows:
Definition 2 (Signal function). A signal function is a function
that maps a cell value ci to range [0, 1] to indicate the error
probability of ci.

This section explains the general ideas and reasons why we
include specific signal functions.
Internal Signal Functions. Internal signal functions are
signal functions that can be computed using values within the
column, and errors related to internal signals concern the rar-
ity of the attribute data. Therefore, our internal signal func-
tions focus on analyzing the frequencies of cell values within
the column and then report the rarity. We apply the hierar-
chical syntactic patterns widely used in transformation learn-
ing systems [Pham et al., 2019; Singh, 2016] and compute
data frequency under four levels of abstractions: characters,
symbols, grouped symbols, and punctuation marks. In sym-
bol sequence, all characters are converted into their symbols
using regex as follows: [A − Z] ⇒ A, [a − z] ⇒ a and
[0− 9] ⇒ 0. In a grouped symbol sequence, we allow quan-
tified regex so that one symbol can replace a sequence of ad-
jacent same-class characters. For example, with the string
“1900, San Francisco CA”, its symbol sequence is “0000,
Aaa Aaaaaaaaa AA” and its grouped symbol sequence is “0
Aa, Aa A”. Our internal signal functions consist of:

• Value frequency: compute the frequency of cell values
in a column.

f(A[i]) =
|{t = A[i] : t ∈ A}|

n

• Symbolic frequency: compute the symbol frequency of
cell values in a column.

f(A[i]) =
|{sym(t) = sym(A[i]) : t ∈ A}|

n

• Grouped symbolic frequency: compute the grouped
symbol frequency of cell values in a column.

f(A[i]) =
|{sym+(t) = sym+(A[i]) : t ∈ A}|

n
• Punctuation frequency: compute the frequency of

punctuation set for each cell value in a column.

f(A[i]) =
|{punct(t) = punct(A[i]) : t ∈ A}|

n
External Signal Functions. External signal functions aim
to locate errors by leveraging information outside the tables,
such as general human knowledge. We leverage the FastText
embedding model [Bojanowski et al., 2017] to characterize
the information in human general knowledge. As FastText is
trained using billions of tokens, their vocabulary can repre-
sent human vocabulary, and tokens missing in FastText have
a high chance of errors. Moreover, we preprocess VizNet [Hu
et al., 2019], a large Web table corpora, and compute statis-
tics such as n-gram frequencies and word frequencies. As
Web tables usually contain numerical or mixed data, analyz-
ing VizNet can help identify potential errors, such as uncom-
mon numerical formats or rare mixed values. SPADE cur-
rently supports the following external functions:

• VizNet N-gram frequency: compute the minimum 2-
grams frequency of cell values in VizNet Web table cor-
pora. In particular, a list of 2-gram character-based se-
quences is generated from a cell value. SPADE then
computes the frequency of each n-gram and reports the
minimum frequency.
f(A[i]) = min {VizNetFreq(s)∀s ∈ bigrams(A[i])}

• FastText out-of-vocabulary: check if any word in the
cell values is out of FastText’s vocabulary.
f(A[i]) = |{outOfFastText(t) : t ∈ tokenize(A[i])}| > 0

• English out-of-vocabulary: check if any word in the
cell values is unknown in English vocabulary 2.
f(A[i]) = |{outOfVocab(t) : t ∈ tokenize(A[i])}| > 0

2https://github.com/barrust/pyspellchecker
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• Missing Value: check if a cell is a missing value

f(A[i]) = I{A[i] = ∅}

3.4 Probabilistic Soft Logic
We use PSL to model the relationships between signal func-
tions and user annotated labels. PSL is a probabilistic graph-
ical modeling framework built upon hinge-loss Markov Ran-
dom Fields (HL-MRF) [Bach et al., 2017]. PSL eases HL-
MRF modeling by allowing model definition using first-order
logic syntax. A PSL model consists of a set of predicates and
first-order logic weighted rules constructed from the predi-
cates. An example of the PSL rule is shown below:

w : LABEL(c, 1) ∧ HASSIGNAL(s, c)⇒ BADSIGNAL(s)

where w is the weight of the rule, LABEL, HASSIGNAL and
BADSIGNAL are three predicates, c and s are variables, and
1 is a constant. In cases where w is undefined, the PSL rules
become hard-constraints and need to be followed in the in-
ference. During inference, the predicates are grounded by
constants, and probabilities of the grounded predicates are in-
ferred using convex optimization with relaxation.

PSL Model
In SPADE, we have four different predicates: ERROR(c) in-
dicates if a cell c is error or not, BADSIGNAL(s) denotes if
a signal s is reliable or not, LABEL(c, l) shows the user la-
bel of cell c (normal value l = 1 , error l = 0 or unlabeled
l = −1), and HASSIGNAL(c, s) corresponds to the value of
signal function s on cell value c. Based on these four predi-
cates, we have a set of PSL rules in SPADE as follows:

¬ERROR(c) (1)
LABEL(c, 0)⇒ ERROR(c) (2)
LABEL(c, 1)⇒ ¬ERROR(c) (3)
LABEL(c,+l) = 1. (4)
LABEL(c, 1) ∧ HASSIGNAL(c, s)⇒ BADSIGNAL(s) (5)
LABEL(c, 0) ∧ HASSIGNAL(c, s)⇒ ¬BADSIGNAL(s) (6)
HASSIGNAL(c, s) ∧ ¬BADSIGNAL(s)⇒ ERROR(c) (7)
HASSIGNAL(c, s) ∧ BADSIGNAL(s)⇒ ¬ERROR(c) (8)

Rule 1 is the prior rule that states that cell values are gener-
ally normal. We set the prior rule to have a low weight since
we want them to be dominated by other PSL rules. Rules
2 and 3 are to enforce that user labeling is always correct,
and Rule 4 ensures that the sum of three probabilities, if a
cell is either normal, error or unlabeled, is 1. These rules are
unweighted since they are hard-constraints in PSL. Rules 5
and 6 model the relationships between signal functions and
user labels. Functions that agree with users are more reliable
than functions that disagree with user labeling. Rules 7 and
8 require that cells scored highly by good signal functions
are more likely to be errors and vice versa. We use the same
weight for all these rules.

PSL Inference
As shown in Figure 1, SPADE conducts collective inference
using the above PSL model and output probabilities of two
predicates: ERROR and BADSIGNAL. Values of BADSIGNAL

predicate denote the quality of each signal function and rep-
resent the importance of each signal function in active exam-
ple selection. ERROR predicates indicate the error probability
of cell values, and the cell with the highest error probability
is reported to users for labeling. Two of the most common
criteria to select active examples are informative and repre-
sentative [Huang et al., 2014]. In SPADE, the cell with the
highest error probability is selected since it is the most in-
formative example for updating the PSL model. Our active
learning relies on PSL inference to select a set of reliable sig-
nal functions to detect potential errors. By labeling the cell
Ci with the highest error probability, users can help verify
the correctness of a subset of signal functions that predict Ci

as an error. Therefore, our PSL model can quickly select the
set of most reliable signal functions. Example 1 illustrate how
SPADE’s PSL inference works.
Example 1. Using the dataset in Table 1, in column House-
hold disposable income, value “-0.5” is a potential error if
we use a format frequency signal function since it is the only
value with the minus sign “-”. However, after user label-
ing, “-0.5” is indeed a normal value. Using Rules 5 and 6,
signal functions that conflict with user labels are more likely
to become BADSIGNAL. Then using Rule 7 and 8, if a signal
function is BADSIGNAL, it will have a weight penalty in error
inference and vice versa. For the column Household dispos-
able income, signal functions that rely on format frequency
will receive the penalty.

After each active learning iteration, we update values of
LABEL predicates to reflect the labels of newly labeled cells
before the inference.

3.5 Data Augmentation
Using the labeled data from users, SPADE performs a two-
phase data augmentation process: synthetic labeling and er-
ror generation. The main goal of data augmentation is to in-
crease the quantity and coverage of training data in SPADE.
Existing supervised error detection approaches usually suffer
from the lack of labeled data, and obtaining user labels is very
time-consuming. We use label propagation to extend the la-
beled data to similar values within close distances. Moreover,
since the errors are usually rare cases in data, we generate
additional synthetic errors to balance the data before binary
classifier training.

Label Propagation
In SPADE, we propagate user labels of labeled cells to other
cell values with similar signal vectors. We called two signal
vectors similar if:

SIMVECTOR(ci, cj) =

{
1 if |f(ci) = f(cj)| ≤ ε ∀f ∈ F
0 otherwise

where F is the set of signal functions in SPADE and ε is a
predefined threshold. Smaller ε means that propagation has
reached fewer examples and may require more active learn-
ing iterations to reach the maximum performance. In com-
parison, larger ε can result in labels spreading to other values
with different properties, resulting in wrong synthetic labels.
We investigate the effect of different ε values in Section 4.4.
In this paper, SPADE uses ε with value 0.01.
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Error Generation
Inspired by the idea of data augmentation in HOLODE-
TECT [Heidari et al., 2019], we apply their error generation
algorithm to enrich our training data. However, to increase
the transformation accuracy, we extend the set of transforma-
tion operations to include:

• InsertAt(s, i): Insert s at position i.
• InsertAfter(s, c): Insert s after character c .
• InsertBefore(s, c): Insert s before character c.
• Replace(s, c): Replace an occurrence of string c with

string s.
• ReplaceAll(s, c): Replace all occurrences of string c

with string s.
• Delete(s): Delete an occurrence of substring s.
• DeleteAll(s): Delete all occurrences of substring s.
Example 2 shows how our system can generate better ex-

amples compared to HOLODETECT.
Example 2. To transform “Los Angeles” into “Los An-
geles CA”, HOLODETECT can learn the transformation:
Insert(“ CA”). However, when applying the transformation
function to a new string “San Jose”, HOLODETECT random-
izes the inserting position and can create multiple different
results such as “San JoCAse” or “SCAan Francisco”. In
SPADE, by using the operation InsertBefore(“$”) where “$”
is the end-of-string character, we can ensure that the gener-
ated errors are more accurate.

3.6 Feature Extraction.
To create a representation for cell values and provide infor-
mation to our classification model, we extract semantic and
syntactic features to ensure that we can create the most infor-
mative cell value representation. We included both semantic
and syntactic features since errors are usually related to one
of these two aspects. For example, format inconsistencies are
related to syntactic features while typos are usually related to
semantic features.
Syntactic Features. To capture the syntactic patterns, we
follow the same hierarchical syntactic patterns used for inter-
nal signal functions. SPADE calculates the Bag-of-character
vectors for each cell value in three different syntactic abstrac-
tion levels: characters, symbols, and grouped symbols.

fchar(A[i]) = {count(w)|w ∈ A[i]}
fsym(A[i]) = {count(sym(w))|w ∈ A[i]}
fsym+(A[i]) = {count(sym+(w))|w ∈ A[i]}

fsyntactic(A[i]) =
[
fchar(A[i]), fsym(A[i]), fsym+(A[i])

]
Semantic Features. To capture the meanings of string val-
ues, pre-trained word embeddings are a common technique
that is widely used. In this work, we use FastText [Bo-
janowski et al., 2017] embedding to capture our cell semantic
meanings. For each cell value, the average character embed-
dings and word embeddings are used as our semantic features.

fchar ft(A[i]) =

∑
c∈A[i] FastText(c)

|A[i]|

fword ft(A[i]) =

∑
c∈A[i] FastText(c)

|A[i]|

fsemantic(A[i]) =
[
fchar ft(A[i]), fword ft(A[i])

]
3.7 Classifier Training
The overall architecture of our classification model is shown
in Figure 2. While the number of dimensions in syntactic fea-
tures, which includes Bag-of-character vectors, can vary be-
tween different datasets, the size of semantic features is equal
to the dimensionality of FastText (300) embedding. To ensure
that the model is not biased toward the features with more di-
mensions, we provide a feature compression module where
we reduce the dimensions of each feature group to a fixed
size of 20. Our compressor module contains a linear fully
connected layer that reduces the number of dimensions and
two intermediate ReLU activation functions, which encour-
ages sparse representation in the data and prevents overfit-
ting. The main network concatenates all compressor outputs
and processes the concatenated vectors in another compres-
sor module with one-dimension output. In the end, SPADE
applies sigmoid activation so that the output is in the range of
[0, 1]. All values with error probabilities higher than 0.5 are
identified as errors.

4 Evaluation
We conduct multiple experiments to compare SPADE against
the state-of-the-art error detection systems using different
datasets and different quantities of labeled cells. We also in-
vestigate SPADE’s running time, the importance of various
features, and classification models in SPADE. Our system
and datasets are available online3.

4.1 Experimental Setup
We evaluate our system on 5 different datasets as shown in
Table 2. The Hospital dataset is a benchmark dataset used in
several data cleaning papers [Heidari et al., 2019; Neutatz et
al., 2019; Mahdavi et al., 2019]. Beers4, Rayyan [Ouzzani
et al., 2016], Flights [Li et al., 2012] and Movies [Das et al.,
2015] are real-world datasets manually collected and cleaned
by users. Rayyan, Flight, and Movies datasets contain multi-
column errors, which are not covered in this paper. However,
we want to include them in our evaluation since they are used
in previous research [Mahdavi et al., 2019; Neutatz et al.,
2019] and more evaluation datasets can show that SPADE is
not fine-tuned to work in a specific domain.

We compare SPADE with RAHA [Mahdavi et al., 2019]
and ED2 [Neutatz et al., 2019], the two state-of-the-art sys-
tems in active-learning error detection. We also include four
other error detection tools that are widely used as baselines
in error detection research: DBOOST [Mariet et al., 2016],
NADEEF [Dallachiesa et al., 2013], KATARA [Chu et al.,
2015] and ACTIVECLEAN [Krishnan et al., 2016]. We report
precision, recall, and F1-score to evaluate the performance in
the error detection task. Since our PSL model is a probabilis-
tic model, we report the performance as the average of 10

3https://github.com/minhptx/spade
4https://www.kaggle.com/nickhould/craft-cans
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Figure 2: Classifier Architecture

Dataset Size Error rate Multi-column errors
Hospital 1000 x 20 0.048 No
Beers 2410 x 11 0.159 No
Rayyan 1000 x 11 0.086 Yes
Flights 2376 x 7 0.298 Yes
Movies 7390 x 17 0.062 Yes

Table 2: Information about our evaluation datasets

independent runs. For readability, we omit the ±0.01 in our
tables when the standard deviations (SD) are less than 0.01
unless otherwise specified.

In the evaluation, we set the maximum number of labeled
cells for each column in SPADE to be 20. We collect 20 la-
beled cells by running four active learning iterations with five
active learning examples per iteration. To ensure fairness, for
systems that detect errors at the dataset level such as RAHA
and ED2, we set the maximum number of labeled cells in a
dataset of n columns to be 20n. We run all the experiments
on a CentOS 7.8 machine with 72 cores, 754GB memory, and
an NVIDIA RTX 2080 GPU.

4.2 Performance Evaluation
Table 3 shows that SPADE outperforms all baseline methods
on five datasets in terms of F1, except for Flights, where we
have a comparable result with RAHA. Specifically, SPADE
excels over the best baseline system in each setting by 0.05 to
0.24 in terms of F1 scores. It is worth noting that both RAHA
and ED2 can detect multi-column errors, and thus they have a
clear advantage compared to SPADE on datasets with multi-
column errors such as Flight, Rayyan, and Movies. SPADE’s
superior performance is strongly supported by our high recall.
Due to the proposed data augmentation algorithm in SPADE,
which can generate significantly more unseen errors for our
system, SPADE is more generalizable than its competitors
and is better at detecting unseen errors.

As observed in Table 3, in datasets with only single-column
errors such as Hospital and Beers, SPADE achieves a very
high F1-score and a perfect recall. SPADE’s performance
drops in the other datasets with multi-column errors, which
is understandable since there is always a set of multi-column
errors that SPADE cannot detect in each dataset. The multi-

column errors also contribute to SPADE’s higher standard
deviations in these datasets. There are multiple cases where
a value can be both error and normal value within the same
column depending on its functional dependency from other
columns. This results in false positive and false negatives pre-
dictions in these datasets. Therefore, SPADE’s performance
in datasets with multi-column errors usually fluctuates.

Figure 3 shows that SPADE requires fewer labeled exam-
ples than the other two systems to reach its maximum F1-
score. In Rayyan and Flights datasets, SPADE has a lower
F1-score compared to RAHA with five labeled cells. This is
because SPADE’s first batch of active learning examples is
suggested purely on average signal function scores without
any user feedback. Starting from the second iteration (10
labeled cells), by leveraging user feedback and filtering re-
liable signals, SPADE reaches a near-peak performance and
outperforms the baselines in all five datasets. Given more la-
beled examples, RAHA and ED2 can eventually catch up with
SPADE in datasets with multi-column errors since SPADE
is capped by our coverage of only single-column errors.

4.3 Running Time Evaluation
In this experiment, we evaluate SPADE’s running time
against two other active learning baselines: RAHA and ED2.
To ensure fairness between different systems, we calculate
the running time needed for each system to finish an itera-
tion of active learning. As shown in Figure 4, RAHA has
the fastest active learning time and SPADE is the slowest
system among the three. However, as we can see, the dif-
ferences between SPADE and other baselines are marginal
across most of the datasets. In the Hospital dataset, SPADE
has a much higher active learning time compared to RAHA
because SPADE handles error detection on each column sep-
arately and thus the active learning time increases linearly
with the number of columns. Since the Hospital dataset has
the most columns in the five evaluation datasets, the differ-
ences in active learning time are the most noticeable.

4.4 Model Analysis
In this evaluation, we evaluate the importance of different
components in SPADE and how removing or modifying
these components will affect the system’s performance.
Classifier Analysis. Table 4 shows SPADE’s error de-
tection performance using various classification models:
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Approach Hospital Beers Rayyan Flights Movies
P R F P R F P R F P R F P R F

dBoost 0.07 0.37 0.11 0.34 1.00 0.50 0.05 0.18 0.08 0.25 0.34 0.29 0.25 0.79 0.38
NADEEF 0.05 0.37 0.09 0.13 0.06 0.08 0.30 0.85 0.44 0.42 0.93 0.58 1.00 0.08 0.16
KATARA 0.44 0.11 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ActiveClean 0.02 0.15 0.04 0.16 1.00 0.28 0.09 1.00 0.16 0.30 0.99 0.46 0.06 1.00 0.12
ED2 0.45 0.29 0.33 1.00 0.96 0.98 0.80 0.69 0.74 0.79 0.63 0.68 0.93 0.05 0.13
Raha 0.94 0.59 0.72 0.99 0.99 0.99 0.81 0.78 0.79 0.82 0.81 0.81 0.85 0.88 0.86
SPADE 0.93 1.00 0.96 1.00 1.00 1.00 0.80∗ 0.92∗ 0.85 0.81∗∗ 0.81∗∗ 0.81* 0.99 0.83 0.90

Table 3: Performance comparison with baseline systems (# labeled cells = 20). * SD = ±0.02, ** SD=±0.03.
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Figure 3: F1-score with different numbers of labeled cells

Hospital Beers Rayyan Flights Movies

10

100

L
og

R
un

ni
ng

Ti
m

e
(s

)

SPADE RAHA ED2

Figure 4: Active learning time in comparison with baseline systems

Random Forest [Breiman, 2001] and XGBoost [Chen and
Guestrin, 2016]. Both classifiers are implemented using the
scikit-learn library [Pedregosa et al., 2011] used with the
default parameters. As shown in Table 4, SPADE’s deep-
learning classifier outperforms all other classifiers in the five
experimental datasets by 0.01 to 0.18 in terms of F1-score.
As SPADE’s deep classifier contains more parameters, it can
exploit features and capture errors’ properties better. There-
fore, it is better at detecting unseen errors. When comparing
RandomForest and XGBoost, the XGBoost classifier yields a
more robust result across five experimental datasets. Random
Forest’s performance, while excels in Rayyan and Movies
datasets, decrease severely in Hospital.

Feature Analysis. In this experiment, we analyze the im-
portance of features in SPADE’s classifier. We run SPADE
with all feature groups and then exclude each feature group,

one at a time, to analyze its impact. As shown in Table 5, the
system that uses only semantic features outperforms the one
with syntactic features. Since we use character embeddings
in our semantic feature group, our semantic features also in-
clude syntactic information such as occurrences of charac-
ters and their frequencies. Therefore, using only semantic
features gives superior performance compared to using only
syntactic features and is also comparable with SPADE.

Propagation Analysis. In this experiment, we investigate
the effect of different values of ε in SPADE. Table 6 shows
that changing values of epsilon has a minimal effect on the
performance of SPADE. It is also worth noting that despite
the decrease in performance, using any ε reported in Table 6,
SPADE still outperforms other baselines (Table 3).

5 Related Work
Previous work on error detection includes supervised [Hei-
dari et al., 2019] and unsupervised [Huang and He, 2018;
Wang and He, 2019] approaches. The current trend in su-
pervised error detection reduces the number of labeled ex-
amples required to detect errors while still maintaining good
performance. Heidari et al. [2019] apply data augmentation
to solve error detection as a few-shot learning problem. On
the other hand, existing unsupervised methods exploit mas-
sive Web table corpora to understand the data distributions
and statistically detect the values that are not aligned with the
learned distributions. AUTO-DETECT [Huang and He, 2018]
uses co-occurrence between values in Web table corpora to
train an unsupervised model for detecting syntactic outliers.
In contrast, UNI-DETECT [Wang and He, 2019] leverages
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Approach Hospital Beers Rayyan Flights Movies
P R F P R F P R F P R F P R F

SPADE 0.93 1.00 0.96 1.00 1.00 1.00 0.80 0.92 0.85 0.81 0.81 0.81 0.99 0.83 0.90
Random Forest 0.57 0.99 0.73 0.94 1.00 0.97 0.79 0.85 0.82 0.86 0.76 0.81 0.99 0.83 0.90
XGBoost 0.86 0.99 0.92 0.99 0.99 0.99 0.80 0.85 0.83 0.90 0.70 0.79 0.85 0.85 0.85

Table 4: Performance comparison between different classifiers (# labeled cells = 20)

Features Hospital Beers Rayyan Flights Movies
All features 0.96 1.00 0.85 0.81 0.90

Syntactic only 0.58 0.98 0.76 0.75 0.91
Semantic only 0.96 0.98 0.85 0.81 0.91

Table 5: Performance comparison with different sets of features

ε Hospital Beers Rayyan Flights Movies
ε = 0.01 0.96 1.00 0.85 0.81 0.90
ε = 0.001 0.96 0.99 0.86 0.81 0.86
ε = 0.005 0.86 0.98 0.86 0.81 0.91
ε = 0.02 0.97 1.00 0.86 0.81 0.89

Table 6: Performance comparison with different ε values

different statistical hypothesis tests for different types of er-
rors on web table corpora to identify errors in pre-defined
types. The major drawback of these unsupervised systems is
their prior user settings, such as co-occurrence dependency in
AUTO-DETECT or the set of pre-defined error types in UNI-
DETECT, which prevent them from generalizing. SPADE
aims to solve the issues of both supervised and unsupervised
approaches by accepting a minimal number of labeled exam-
ples to remove the prior user settings while still ensuring that
the system can perform without a lot of training data.

The idea of SPADE also applies to other interactive er-
ror detection systems. NADEEF [Dallachiesa et al., 2013]
takes assertion rules as inputs and outputs the violated cell
values. KATARA [Chu et al., 2015] marks errors that do not
follow the entity relationships in given knowledge bases, and
DBOOST [Mariet et al., 2016] uses histogram and Gaussian
modeling to detect outliers. However, these systems, which
require user inputs initially, usually suffer from low recall de-
tection. Users need to understand the data errors before spec-
ifying the configurations, requiring going through the entire
dataset. SPADE’s active learning process is initialized by the
system’s signal functions, helping SPADE detect potential
errors and overcome the low recall problem.

Another direction in interactive error detection is active
learning. In recent years, this research direction has drawn a
lot of attention from researchers. ED2 [Neutatz et al., 2019]
uses a double-dimensional active learning approach that rec-
ommends both suspicious columns and rows for user label-
ing. On the other hand, RAHA [Mahdavi et al., 2019] in-
corporates an ensemble method to apply detection strategies
from existing systems to cluster data and produce represen-

tative examples for user labeling. Our study of SPADE also
follows the methodology in this line of research. However,
by incorporating PSL, we present a more reliable way of in-
tegrating information from users. As a result, SPADE can
create a flexible active learning strategy compared to existing
methods. In addition to that, SPADE proactively leverages
data augmentation to generate more training data to overcome
the small amount of labeled data in active learning systems.

6 Conclusion
We presented SPADE, a novel learning-based system for er-
ror detection that can effectively reduce the number of labels
required for training while maintain excellent performance in
error detection. SPADE incorporates a probabilistic active
learning model that allows signals captured for both internal
and external information. During the active learning process,
SPADE flexibly updates the active learning model using user
labels. Therefore, SPADE achieves better performance in all
five experimental datasets when compared to previous state-
of-the-art systems. Furthermore, SPADE utilizes a data aug-
mentation process where we enrich our training datasets with
synthetic data. The process generates additional errors and
helps SPADE generalize better to unseen errors. As a result,
SPADE has a better recall in the evaluation.

In the future, we plan to extend SPADE to detect multi-
column errors by leveraging relationships from knowledge
bases. We also plan to apply incremental learning for our
classifiers to reduce the system’s running time since the clas-
sifiers currently needs to be trained for each data attribute.
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