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Abstract There is a large amount of data on the web in tabular form, such as Ex-
cel sheets, CSV files, and web tables. Often, tabular data is meant for human con-
sumption, using data layouts that are difficult for machines to interpret automatically.
Previous work uses the stylistic features of tabular cells (such as font size, border
type, and background color) to classify tabular cells by their role in the data layout
of the document (top attribute, data, metadata, etc.). In this paper, we propose a deep
neural network model which can embed semantic and contextual information about
tabular cells in a low-dimensional cell embedding space. We pre-train this cell em-
bedding model on a large corpus of tabular documents from various domains. We
then propose a classification technique based on Recurrent Neural Networks (RNNs)
to use our pre-trained cell embeddings, combining them with stylistic features intro-
duced in previous work, in order to improve the performance of cell type classifi-
cation in complex documents. We evaluate the performance of our system on three
datasets containing documents with various data layouts, in two settings, in-domain,
and cross-domain training. Our evaluation result shows that our proposed cell vector
representations in combination with our RNN-based classification technique signifi-
cantly improves cell type classification performance.

1 Introduction

A vast amount of useful data is available in structured tabular formats, such as spread-
sheets, comma-separated value files, and web tables. Tabular data is represented in a
structured form following established principles of data organization (34; 11). How-
ever, understanding such data can be cognitively challenging for humans, and au-
tomated techniques for table understanding still struggle to parse arbitrary datasets.
Tabular data covers many different domains and subjects and is expressed in formats
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that include hierarchical relationships (e.g. Figure 1c) and concatenation of disparate
data (e.g. Figure 1b). One useful step towards understanding tabular data is to iden-
tify elements of tabular data layout by understanding the role of each tabular cell in
the data layout of the tabular document.

There are different definitions and terminologies used for different roles in tabular
data layouts in the literature (33; 8; 22). We combine the terminologies and definitions
introduced by Chen et al. (8) and Koci et al. (22) which suggest that there are six
major cell types in tabular documents (Figure 1):

1. Metadata (MD): presents meta-data information for the document or part of the
document. This meta-data information usually explains what the content of a doc-
ument (or part of a document) is about. For example, the top meta-data block in
figures 1c and 1b contains table titles and explanation of what the table presents.
The inner meta-data blocks in Figure 1b are meant to state the categories of char-
acteristics in the first column.

2. Top Attribute (TA): top attributes are the headers for table columns which can be
hierarchical as in Fig. 1a.

3. Left Attribute (LA): left attributes are the row headers, and similarly to top at-
tributes, they can be hierarchical.

4. Data (D): data cells are the core body of the table.
5. Derived (B): a cell (often with numerical value) that is derived from other cells in

the table, e.g. summation of values in a column.
6. Footnotes (N): present additional information about the document or part of the

document.

Pre-trained vector representations are an essential part of state of the art systems
for several natural language processing tasks, including sequence tagging (23), text
classification (19), and machine translation (26). Pre-training is often performed on a
large corpus of unlabeled data, which enables capturing general patterns in the data.
The resulting pre-trained vector representations embed the general data patterns and
can be used as features for various downstream tasks (14). In this paper, we present
a novel method for learning pre-trained vector representations of tabular cells (cell
embeddings) and propose a novel approach for classifying tabular cells by their role
type using the cell embeddings.

Previous approaches for cell role type classification focused on manually-
engineered stylistic, formatting, and typographic features of tabular cells (7; 2; 22).
Examples of such features are background color, font size, cell data type, and pres-
ence of capitalized letters. These features are often dependent on richly-formatted
documents in a particular representation (such as Excel documents or HTML), pre-
venting such approaches from being universally applicable. In particular, a large num-
ber of published data sources are represented in textual, tab or comma-separated for-
mats where stylistic features are unavailable. For example data.gov contains about
19,000 CSV files from various domains. Moreover, such features can be prone to
human error (incorrectly applying bold formatting) or overfitting to specific stylistic,
formatting, or typographic conventions that cannot transfer to new domains. Unlike
prior work, our proposed pre-trained cell embeddings learn representations from large
number of tables using the textual content of cells alongside presentation features.
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Our pre-training method leverages regularities in structure, style, and content that are
present in tabular data (34; 11). We use these cell embeddings as cell features and
propose a supervised classification system to achieve the cell role type classification
downstream task.
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Fig. 1: Table layout examples. From (a) DeEx, (b) SAUS, (c) CIUS. Colors are added
for annotation and not part of spreadsheets.
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Fig. 2: Overview of our system. A training corpus of tabular documents is used to first
train cell embedding models (E), and then to train the classification model (ν) using
the obtained cell embedding model. For a test document, first the cell embeddings are
generated and then the classification model is applied to predict cell types.

To achieve the cell role type classification task using the pre-trained cell embed-
dings, we develop a novel, supervised cell classification model using recurrent neural
networks (RNNs). The RNN model uses our cell embeddings, whose representation
captures the context of nearby cells, and introduces additional long-range depen-
dencies and context. Prior work (2; 7) sought to capture these dependencies using
graphical models such as conditional random fields (CRFs), but such approaches are
time-consuming to train and, in our experiments, show poor performance. Our sim-
ple and elegant architecture uses two, independent long short-term memory (LSTM)
networks, one for rows and one for columns. Each of the LSTM networks uses cell
embeddings with a context learned from prior cells. Together, the output vectors of
these LSTMs are used to classify cells into the six cell role types.

Our method for cell type classification consists of two steps. We first build an
embedding model to generate vector representations for cells in tabular documents
(§2). In the second step, we develop and train an RNN-based classifier that uses these
vector representations for cell type classification (§3). The cell vector representation
model itself consists of two parts: the first represents global semantic information
using contextual cells to produce a latent representation of the cell (§2.1), while the
second represents local information from latent patterns of stylistic features of each
cell (§2.2). Our classification method observes the sequence of the cells in each row
and column to take into account dependencies between cell types for cells in a tabular
document. The overview of our system is shown in Figure 2.

As a motivating example of the power of cell embeddings in conjunction with
LSTM classification, consider the problem of identifying derived cells, a common
classification task for table understanding. This task requires identifying cells whose
values are computed from other cells, often using aggregation formulas such as sum,
average, or variance. Successful approaches for Excel spreadsheets use the presence
of formulas to identify derived cells, but formulas are unavailable for web and text-
based representations. Feature-based methods attempt to identify predictive labels
(such as the word “total”), but a manual process for curating such features cannot
scale to the vast number of tables on the web, where domain- or language-specific
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keywords abound (e.g., “ogółem” meaning total in Polish). Our embedding-based
approach can use regularities in the use of words such as ”total” or ”ogółem” across a
large corpus of tables to improve accuracy of detecting adjacent derived cells. In our
experiments, transforming Excel sheets into CSV resulted in a dramatic 68% decline
in F1 scores for feature-based classification of derived cells. In contrast, our cell
embedding approach outperforms feature-based methods for both richly-formatted
Excel documents and impoverished CSV representations and maintain performance
with a much smaller 27% decline.

We evaluate our method on three datasets, deexcelerator (DeEx) 1, SAUS 2, and
CIUS. The first two datasets have been used in previous work (22; 7). DeEx is an
annotated dataset, but SAUS does not contain annotations and we manually anno-
tated its documents. Also, we collected the CIUS dataset from fbi.gov website3, and
manually annotated its documents4. These datasets contain tables with complex data
layouts and contain data from different domains (financial, business, crime, agricul-
tural, and health-care). Example documents shown in figures 1a, 1b, and 1c are from
financial, crime, and health-care domains respectively.

We compare the performance of our system with previous feature-based tech-
niques (7; 22). In our evaluations, we test our system under both in-domain and
cross-domain evaluation settings. The in-domain setting investigates the trainablity
of our proposed methods. The cross-domain setting investigates the generalizabil-
ity of our methods in a transfer learning scenario. In the in-domain setting, we train
and test our system on each dataset separately. In the cross-domain setting, we train
the model on two of our datasets and test it on the other dataset. Our experiments
show that our system performs better than the baseline systems in both these set-
tings. Finally, we perform several ablation experiments to determine the importance
of different components in our proposed method.

The remainder of the paper presents our key technical contributions:

– a method for generating embedding representations for cells in a tabular data
leveraging contextual content and stylistic features (§2)

– an RNN-based cell classification model using pre-trained cell embeddings and
capturing long-range structural dependencies (§3)

– empirical evaluation on three real-world benchmark datasets that show state-of-
the-art performance (§4)

2 Pre-training Cell Embeddings

We aim to build an unsupervised system which learns cell vector representations
from unlabeled tabular documents. More formally, given a document D expressed
as a tabular matrix with N rows and M columns, D = {Ci, j;1 ≤ i ≤ N, 1 ≤ j ≤
M}, we define a collection of cells (Ci, j’s). We wish to learn an embedding operator

1 https://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator/
2 http://dbgroup.eecs.umich.edu/project/sheets/datasets.htm
3 https://ucr.fbi.gov/crime-in-the-u.s
4 data and code: github.com/majidghgol/TabularCellTypeClassification
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Fig. 3: Contextual cell embeddings. The green cell (Ci, j) is the target cell for which
we want to calculate the cell embedding, and the blue cells are context cells. The cell
values are first encoded into numerical vectors using the TextEnc module, and then
fed into the ctx and t networks. Encctx and Enct modules have the same structure, but
different parameters. Same applies to Decctx and Dect . The structure of these modules
are depicted on the top right of this figure.

(E) that maps a tabular cell Ci, j and its context to a k-dimensional vector, Vi, j ∈ Rk.
In this paper, our E consists of two parts. The first part represents global semantic
information for a tabular cells using its textual content and context (Ec). The second
part represents local information from latent patterns of stylistic features of each cell
(Es). We then define the cell embedding operator as concatenation of the contextual
and stylistic embedding operators, i.e. E , < Ec,Es >.

2.1 Contextual Cell Embeddings (Ec)

The textual value of a tabular cell alone does not provide much information about
the cell role in the data layout. The same texts, such as “Price” may occur in vastly
different contexts (e.g. in the table title, column header, or data cells). Therefore, an
embedding based on the cell value alone is insufficient (as the experiments in section
4.4 shows). In order to calculate a meaningful cell representation, the context in which
tabular cells appear should be taken into account.

Users often follow conventional rules (33) to arrange their data in tabular docu-
ments, for example they put the headers on top of the table, put dates in order (the



Learning Cell Embeddings for Understanding Table Layouts 7

header column in 1b), and separate different parts of the document (e.g. separate
tables) by empty rows or columns. Our contextual cell embeddings utilize such co-
occurrences in tabular data, which is predominantly organized in two-dimensional
matrices.

In natural language text, important co-occurrences are defined based on the
surrounding words. Similarly, in tabular data, surrounding cells contain important
information and tabular data formation is often homogeneous along tabular rows
or columns. Additionally, tabular data has a non-local nature and important co-
occurrences can be spatially diverse. Therefore, tabular cell context includes both
its surrounding cells (local context) and some distant cells (distant context). As an
example of local cell context, consider a tabular column with hierarchical headers,
where the context of a lower level header cell, includes the higher level header cell in
the row above. As an example of distant cell context, consider a data cell in the mid-
dle of a table, for which the column header may be many rows above and is part of its
context. Distant context of tabular cell is hard to identify and requires understanding
of tabular data layout (for example identifying column headers) which is not a priori
known in an unsupervised setting.

In this paper, we only use the local context of tabular cell to train the con-
textual cell embedding operator. We define the local context of a target cell as
its adjacent cells to the left, right, above and below. Based on preliminary ex-
periments using our development set, we achieved the best performance with a
neighborhood window size of 2, and our system uses 8 neighboring cells in hor-
izontal and vertical directions as local context (blue cells in Figure 3). More for-
mally we define the local context of a target cell Ci, j in a tabular document D as
XCi, j ,Ci−2, j,Ci−1, j,Ci+1, j,Ci+2, j,Ci, j−2,Ci, j−1,Ci, j+1,Ci, j+2.

Our design for the cell embedding model uses two independent auto-encoder net-
works, Et

c and Ectx
c , to respectively embed both the target cell and its local context.

Figure 3 shows an overview of our contextual cell embedding model. Et
c (bottom net-

work in Figure 3) tries to predict the value of a context cell given the value of the
target cell. Ectx

c (top network in Figure 3) tries to predict the value of a target cell
given the value of its context cells. Et

c and Ectx
c are use similar encoder and decoder

modules, which are depicted in Figure 3. Note that in both Et
c and Ectx

c , the values of
target and context cells are encoded into numerical vectors using the TextEnc mod-
ule, before feeding into the encoder modules. Et

c and Ectx
c follow architectures similar

to skip-gram (SG) and continuous bag-of-words (CBOW) word embedding models
respectively (25). The remainder of this section explains different parts of our cell
embedding model in more details.

2.1.1 Encoding Cell Values

In word embedding methods, a vocabulary of words is assumed to be available during
the training stage, allowing the generation of vector representations for all words. In
our problem setting, cell values in tabular documents have a large variety and may
vary from a single number to multiple sentences, violating this assumption. For our
system to be able to use the cell values, they need to be encoded in a latent vector
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Fig. 4: Applying In f erSent module to a cell value. The word embedding vector for
each word in the cell text is fed into a bidirectional recurrent network of GRU units,
and the vector representation for the cell text is collected at the output of the first
GRU unit. Note that we use the pre-trained network parameters and no fine-tuning is
done in the In f erSent network parameters.

representation. More formally, for each cell value s, we wish to associate a vector
representation vs ∈ Rd .

To achieve such vector representations, an encoder module for the cell values may
be trained along with the context embedding network. However, in our preliminary
experiments, we could not achieve stable performance with such designs, which we
hypothesize may be solved by larger training corpus.

In this paper, we address this issue by using pre-trained sentence encoding mod-
els which have been shown to work well on short phrases, sentences, or collection
of sentences. We experimented with two popular systems for encoding sentences and
short texts, Universal Sentence Encoder (6) and InferSent (10), to generate vector rep-
resentations for cell values. We choose to use InferSent in our model since it showed
better performance in our preliminary experiments. Figure 4 shows an example how
the InferSent module is applied to cell values. InferSent uses a bi-directional recur-
rent neural network consits of Gated Recurrent Units (GRUs), which is pre-trained on
English sentences. For each word in the cell text (s), the associated word embedding
vector from pre-trained word embeddings (W ) is fed to the corresponding GRU. The
output of the first GRU is collected as the text encoding vector (vs). We use GloVe
(28) pre-trained word embeddings in our model.

The sentence encoding module treats the tokens which are not present in GloVe
dictionary of tokens as unknown and discards them. GloVe contains only a small
number of numerical tokens. Therefore, many of the numerical tokens will not be
present in its dictionary, which may be problematic since a large number of tabular
cells in our datasets are numeric and contain only numerical values (e.g. data and
derived cells in Figure 1b and 1c). To overcome this issue, we use a different encoding
method for cells containing only numerical values. Our encoding method tries to
preserve the distribution of numbers in the encoding space, and is motivated by the
positional encoding method in (32). To formally introduce this encoding method, let
us denote a numeric cell text as the general form of an...a1a0.b1b2...bm. Equation (1)
describes the formulas to calculate each element in the text encoding vector vs for
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(a) (b)

Fig. 5: Encoding numerical cell values. a) Example of applying the numeric value
encoding. On the left are the encodings of digits in different positions, and on the right
is their summation which is the final encoding vector (vs). Note that here d = 100. b)
Visualization of numeric values encodings for a random sample of 100,000 numbers
between 0 and 107. The color of each point corresponds to natural logarithm of its
associated number.

numeric cells. Note that our method assumes the numbers to be positive, and we use
the absolute value of negative numbers to apply our method.

v2 j
s =

n

∑
i=0

ai2isin(i/100002 j/d)+
m

∑
i=1

bi2−isin(−i/100002 j/d)

v2 j+1
s =

n

∑
i=0

ai2icos(i/100002 j/d)+
m

∑
i=1

bi2−icos(−i/100002 j/d)

(1)

Figure 5b shows an example of encoding vectors achieved by our number encod-
ing formula. Note that the vector representation for ”285,866,466” (highlighted with
red, a derived cell) is very different from the vector representation for ”28,984,708”
(highlighted with green, a data cell), since the two values are distant numerically.
Figure 5a shows a 2D visualization of the encoding vectors for 100,000 random pos-
itive decimal numbers. The color of each point in this figure is proportional to its
associated number (warmer color means bigger number). This figure shows that our
proposed number encoding method is able to preserve the distribution of numbers in
the encoding vector space. Note that such information is especially useful in identi-
fying derived cells which often have larger values compared to data cells.

2.1.2 Training network parameters

To formally explain how our proposed contextual cell embedding framework works,
let us denote the TextEnc module as a function that gets the textual value of a cell and
outputs a d dimensional vector representation, I : S→ Rd , where S is the set of all
sentences. Also, let us denote the encoder and decoder modules as, Encctx : R8d →
Rd′ , Enct : Rd → Rd′ , Decctx : Rd′ → Rd , and Dect : Rd′ → Rd . d′ is the dimension
of the hidden encoder output which we consider to be the same for both Ectx

c and Et
c.

We concatenate the context vectors and feed the resulting vector to Encctx, causing
the dimension of the input to Encctx be 8d.
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Fig. 6: Stylistic feature embeddings.

At training time, we train Ectx
c and Et

c networks separately, and try to minimize the
prediction error of each network. We use mean square error of the network output
and the desired vector (target cell value encoding for Ectx

c and a context cell value
encoding for Et

c) as prediction loss measure. More formally, we define the prediction
loss of Ectx

c and Et
c as:

lctx(φ) = ∑
i

∣∣∣∣I(Ci)−Decctx
φ1

(
Encctx

φ2

(
I(XCi )

))∣∣∣∣2 (2)

lt(φ) = ∑
i

∑
C j∈XCi

∣∣∣∣I(C j)−Dect
φ3

(
Enct

φ4

(
I(Ci)

))∣∣∣∣2 (3)

where φ =< φ1,φ2,φ3,φ4 > is the network parameters, and i is the training sample
index (a cell in the training corpus). XCi is the set of local context cells for Ci, and
I(XCi) is the concatenation of Infersent module output for local context cell values.
Our training objective is to find the model parameters that minimize this loss function,
i.e. argminφ lctx(φ)+ lt(φ).

During evaluation time, when dealing with a document that the model has not
seen before, we use the model parameters we trained before and the value of tar-
get and context cells to generate cell embeddings for the new cells, using the
output of the encoder layers in the networks. More formally, give a tabular cell
Ci, j and its context cells XCi, j , the embedding representation is: Ec(Ci, j,XCi, j) =<
Ectx

c (Ci, j,XCi, j),E
t
c(Ci, j,XCi, j)>.

It is important to note that our contextual cell embedding framework uses both
skip-gram and CBoW networks in order to utilize both the target and context cells
values to calculate a target cell vector representation. The Infersent module helps
with adding semantic information about the cell value and its context in our cell
vector representations. One other solution is to use a cell embedding vector, similar to
document or paragraph vectors (24). In these methods, a vector representation for the
document is calculated at test time by fixing all the parameters of the network except
the document vector, and using gradient descent to infer a document vector using the
words it contains. We experimented with designs that used this architecture in our
preliminary experiments but were not successful. We hypothesize such approaches
may be successful with more training data and training time.

2.2 Stylistic Cell Embeddings (Es)

Spreadsheets and, to some extent, web tables are richly formatted and contain for-
matting, styling, and typographic information in many cells. CSV files contain only
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Fig. 7: RNN-based classification method.

limited formatting and typographic features. Koci et al. (22) introduced a large set of
features for the cells in spreadsheets, and selected 50 features that proved to be useful
in their experiments . These features include cell text features (such as presence of
capital letters, presence of numbers, number of leading spaces), and cell styling fea-
tures (such as font size, font color, background color, border types). These features
are categorical or integers, and cannot be used directly in our classification system.
We first create an integer representation for all the categorical features by indexing
the categories. This results in an integer vector representing the cell features. In or-
der to use these integer vectors alongside the cell embeddings in our classification
system, we need to transform them into continuous numerical vectors. We use an
auto encoder architecture as illustrated in Figure 6 to achieve this. The auto encoder
network tries to reconstruct the input integer vector at its output, and generates con-
tinuous vector representations at the output of the encoder layer. We use mean square
error between the output of the decoder, and the true integer vector as loss function
for training the network. At test time, we feed the integer vector for cell features as
input and take the stylistic embeddings (Es) from the encoder output.

3 Classifying by cell role type

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
have been successfully used to detect coarse-grain elements, such as tables and charts,
in tabular documents (4). In these works, CNNs and RNNs are used to encode tabular
documents, or part of tabular documents (e.g. rows and columns). (27) uses RNN and
CNN network for table type classification, and (35) uses RNNs for validating target
relationships between candidate cells in tabular data as part of their framework for
knowledge base creation. However, they do not use RNN networks for classifying
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the cells in tabular documents. To the best of our knowledge, RNNs have not been
investigated for cell level classification in tabular documents.

In our classification method, we use LSTM blocks to capture cell type depen-
dencies in tabular documents. An LSTM block observes a sequence of input vectors
(x1...xn) and generates a hidden output for each vector in the input sequence (h1...hn).
It also maintains an internal state, and for every vector in the input sequence, the
hidden output of the LSTM is a function of its state, the input vector, and its pre-
vious output. An LSTM maintains information about arbitrary points earlier in the
sequence and is able to capture long-term dependencies, which is especially useful
for capturing some information about the distant cell context which our cell embed-
ding framework does not consider. For example a top attribute may be followed by a
long sequence of data cells in its column and it is useful for the classifier to remember
the top attribute when classifying the data cells.

Tabular formats impose cell dependencies in both its rows and columns. To cap-
ture both of these dependencies, we couple two LSTM networks (with different pa-
rameters), one observing the sequence of cells in each row, and the other observing
the sequence of cells in each column. This architecture gives the LSTM blocks the
ability to consider the cells on the left and above the target cell, when generating the
output for the target cell. For example, in Figure 1a, when classifying the cell B17
with value of 70,372, the column LSTM remembers the column header (and repre-
sents information that may be used to infer that this cell is a derived cell because it
has the word total in its column header), and also the row LSTM remembers the row
header. We use the cell embeddings introduced in previous section as input vectors to
these LSTM networks.

Fig. 7 shows the overview of our cell classification framework. Given a document
with N rows and M columns, we first generate embedding vectors for each cell in
the document as explained in the previous section. We then pad the document with
special vectors to distinguish borders of the document. We use 1 for left and right
padding cells, and -1 for top and bottom padding cells. The result is a tensor (TD) of
size (N + 2)× (M + 2)× d′. There will be N + 2 row sequences and M + 2 column
sequences for the document.

To explain how our classification framework works, let us focus on the cell in row
i and column j in the tensor we created (this corresponds to the cell in row i−1 and
column j− 1 in the original document because of the padding process), and call it
the target cell. In order to classify the target cell, the row LSTM network observes
i’s row, and the column LSTM network observes j’s column in TD. Moreover, j’s
hidden output from the row LSTM (hr

j), and i’s output from the column LSTM (hc
i )

corresponds to the target cell. We concatenate these two vectors and use a linear
layer to reduce the dimension from 2d′ to the number of cell types K. We then use a
softmax layer to calculate the probabilities for different types for the target cell. More
formally,

ŷφr ,φc
i, j = (hr,φr

j ,hc,φc
i )θ T +b (4)

p̂i, j(k;φr,φc,θ) =
eŷk,φr ,φc

i, j

∑
K
k=1 eŷk,φr ,φc

i, j

(5)



Learning Cell Embeddings for Understanding Table Layouts 13

, where ŷφr ,φc
i, j is the output of the linear layer, with size K,

p̂i, j(k;φr,φc,θ) is the k’s output of the softmax layer, φr, φc, and θ are row LSTM,
column LSTM, and linear layer parameters respectively.

We use a weighted Negative Log Likelihood as our loss function for training the
classification network. The loss function can be formally written as:

l(φ1,φ2,θ) =−∑
di

∑
i, j

K

∑
k=1

wkyk
i, j,di

ŷk,φr ,φc
i, j,di

(6)

where di is the document index in the training corpus, i is the row index, j is the
column index, k is the index of cell type label, wk is the weight of label k, ŷk,φr ,φc

i, j,si
is

given by equation 4, and yi, j,si is a one-hot vector of size K and has a 1 element in the
position of the true label for the target cell. We set wk to be inversely proportional to

the number of cells with class type k in training corpus (ntrain
k ), wk = 1− ntrain

k
∑

K
k′=1 ntrain

k′
.

The training objective is to minimize the loss function, i.e. argminφ1,φ2,θ l(φ1,φ2,θ).
Given a new document during test time, the cell type for each cell in the document

is calculated by using equation 5, and picking the cell type with maximum probability,
i.e. argmaxk p̂i, j(k).

4 Empirical Evaluation

We investigate the performance of our proposed classification method, and the qual-
ity of our proposed cell embeddings in our experiments. We investigate two research
questions in our experiments. First, we investigate whether our proposed system can
achieve better performance in a given domain, and whether our proposed cell embed-
dings capture useful information. To this end, we compare the performance of our
system with the baseline systems in an in-domain training setting. Second, we inves-
tigate if our proposed system can be transferred to new domains with minimal user
effort. To this end, we compare our system with baseline systems in a transfer learn-
ing scenario, where we train the models (both cell embedding and cell classification
models) on two of our datasets and test them on the third one.

We also investigate the performance on documents that are not richly formatted,
such as CSV files. To this end, we use a set of reduced cell features related to syn-
tactic features of cell values (csv features) for the baseline systems. We refer to the
complete set of cell features (which includes csv features) as excel features. We per-
form the experiments in both in-domain and cross-domain settings with csv, as well
as excel features to evaluate how much the performance of the systems is dependent
on rich styling features. Finally, we perform ablation experiments using additional
baselines on SAUS dataset, to determine the importance of different components of
our proposed method.
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4.1 Evaluation Setup

4.1.1 Datasets

We evaluate our system on three real-world spreadsheet datasets containing tables
with a significant variety of data layouts. The first dataset (DeEx), used in the DeEx-
celerator project5 contains 216 annotated Excel files from ENRON, FUSE, and EU-
SES. The second dataset, used in (8), is 2010 Statistical Abstract of the United States
SAUS, consisting of 1,369 Excel files downloaded from the U.S. Census Bureau. The
third dataset is from the Crime In the US (CIUS) in 2007 and 2017, consisting of 1005
Excel files. We use the annotations provided in DeEx dataset, and manually annotate
200 and 250 Excel files, randomly selected from each of SAUS and CIUS datasets
respectively. We use the XCellAnnotator Tool 6 for the annotation task. XCellAnno-
tator provides a user interface for manually annotating cell ranges in spreadsheets.
We put each spreadsheet from these Excel files into a single document. This leads to
457, 210, and 268 annotated documents in DeEx, SAUS, and CIUS datasets.

4.1.2 Train/test split

We randomly split the documents from each dataset into train, validation, and test
sets. Note that Koci et al. (22) use a different method for train/test splits in their eval-
uations which splits on cells rather than documents. They use a heuristic to downsam-
ple the cells from the DeEx dataset in order to remove the class imbalance caused by
large number of data cells compared to other types. They then shuffle all the cells in
the downsampled dataset and generate random stratified train/test splits (22). We be-
lieve that splitting by document is more appropriate as it leads to testing performance
on unseen documents, where none of the cells in the test documents have been used
for training. We were able to recreate the results in (22), using their train/test split ap-
proach on their downsampled dataset in our preliminary experiments, with less than
2% error.

4.1.3 Baseline Systems

We compare our system with two baseline methods that have been proposed in previ-
ous work. The first baseline is proposed by Koci et al. in (22) uses a set of manually
crafted cell features which cover formatting, styling, and typographic features of tab-
ular cells. This baseline uses a Random Forest (RF) classifier to classify individual
cells in tabular documents. The second baseline is proposed in (8), and also uses
manually crafted formatting, styling, and typographic cell features, but uses a Condi-
tional Random Field (CRF) classifier for cell type classification, in order to take into
account cell type dependencies.

5 https://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator/
6 https://github.com/elviskoci/XCellAnnotator



Learning Cell Embeddings for Understanding Table Layouts 15

per-class F1 F1-
TA D MD B LA N Macro

D
eE

x C
F

RF (22) 73.1 97.9 58.0 31.1 44.3 26.5 55.2 ± 6.3
CRF (7) 24.4 49.4 27.4 14.0 10.4 2.1 21.3 ± 5.4
RNNS 82.1 98.7 54.9 55.2 50.2 32.1 62.2 ± 3.2

C
E RFC+S 71.2 98.8 65.5 45.2 55.9 20.1 59.5 ± 5.4

RNNC+S 83.3 98.9 65.0 67.9 64.3 42.9 70.4 ± 3.1*
# c 1374 75110 1503 386 306 227 -

SA
U

S C
F

RF (22) 93.4 97.5 84.7 44.2 93.1 90.0 83.7 ± 2.7
CRF (7) 89.3 97.6 65.4 23.5 86.6 87.0 74.9 ± 4.2
RNNS 93.2 97.8 90.9 50.7 94.2 95.1 87.0 ± 2.1

C
E RFC+S 92.1 97.8 87.1 53.2 93.8 93.2 86.2 ± 3.3

RNNC+S 95.1 98.0 92.6 62.2 95.0 95.9 90.4 ± 3.5*
# c 533 12667 50 486 1414 85 -

C
IU

S C
F

RF (22) 98.2 99.0 99.1 86.9 94.2 99.3 96.2 ± 1.2
CRF (7) 81.8 97.9 93.1 73.2 85.7 93.0 87.4 ± 2.4
RNNS 99.9 99.1 99.2 83.4 97.6 98.8 96.3 ± 1.3

C
E RFC+S 99.8 99.2 98.9 86.1 97.1 99.0 96.7 ± 1.1

RNNC+S 99.8 99.3 99.2 89.6 97.4 99.2 97.5 ± 0.9*
# c 379 19552 91 668 2048 81 -

Table 1: Classification scores for the case of excel features availability. CF and CE
denote the manual cell features and our proposed cell embeddings respectively. RNN
is our proposed classification method, and RF and CRF denote random forest and
conditional random field methods. #c is number of cells in test set averaged over the
20 random splits. Best F1 scores for each case is bold faced, and F1-Macro scores
marked with a * are statistically significant with p-value ¡ 0.05.

4.1.4 Experimental Details

In our experiments the text encoding vector dimension is d = 4096 (determined by
InferSent module). We use d′ = 200 for contextual cell embeddings and d” = 30 for
the stylistic cell embeddings. We train the contextual and stylistic cell embeddings
for 100 epochs, with batch sizes of 200 cells, on the train set for each dataset. We
use Adam optimizer with learning rate of 0.0005 to train the networks. We also set
p= 0.1 for the dropout layers. On an RTX 2080 GPU, training for each batch takes 10
milliseconds. We use the validation set for early stopping while training our proposed
RNN-based cell classification network and use F1-macro score as the stopping crite-
rion. We also use the validation set for tuning the hyper-parameters of the baseline
classification methods. In our preliminary experiments mini-batch bagging achieved
better results than the downsampling heuristic in (22), and given that it is is a more
principled approach to address class type imbalance, we use mini-batch bagging for
the RF baseline in our experiments. We also follow the instructions in (7) to imple-
ment the CRF baseline classifier. Since the feature set introduced by (22) is more
comprehensive and covers the features in (7), we use their feature set for both RF and
CRF baselines in our experiments.



16 Majid Ghasemi-Gol et al.

per-class F1 F1-
TA D MD B LA N Macro

D
eE

x C
F

RF (22) 48.3 96.1 39.0 9.8 35.8 8.2 39.4 ± 7.7
CRF (7) 28.3 49.1 28.3 5.6 1.0 0.0 18.7 ± 5.1
RNNS 76.8 98.2 54.0 46.9 42.7 20.1 56.5 ± 4.8

C
E RFC 38.9 97.1 63.7 23.2 44.5 18.3 47.6 ± 6.2

RNNC 73.5 98.7 62.7 49.5 56.9 40.2 63.6 ± 3.7*
# c 1374 75110 1503 386 306 227 -

SA
U

S C
F

RF (22) 93.0 97.4 83.5 24.8 92.8 89.9 80.1 ± 2.3
CRF (7) 91.9 97.2 76.2 5.1 86.6 85.9 73.8 ± 2.1
RNNS 93.8 97.6 89.2 44.2 94.3 95.2 85.7 ± 2.4

C
E RFC 77.6 97.3 75.3 26.1 90.7 90.2 76.2 ± 3.9

RNNC 93.8 98.0 90.5 57.3 95.3 94.7 88.3 ± 2.2*
# c 533 12667 50 486 1414 85 -

C
IU

S C
F

RF (22) 97.9 97.7 99.1 55.5 93.7 99.2 90.6 ± 1.7
CRF (7) 98.0 97.8 97.7 0.8 96.2 96.9 81.2 ± 1.9
RNNS 99.0 98.6 98.9 73.2 97.3 99.0 94.4 ± 2.1

C
E RFC 96.8 98.6 97.2 69.5 96.7 97.1 92.6 ± 1.8

RNNC 99.6 98.8 98.9 81.2 97.1 98.7 95.7 ± 1.9*
# c 379 19552 91 668 2048 81 -

Table 2: Classification scores for the case of csv features. For manual features (CF),
only CSV features are used. For CE, only the context embeddings (Ec) is used.

4.2 In-domain evaluation

In order to investigate the ability of each system to learn data layout patterns from a
dataset, we evaluate the systems on each dataset separately. We split the documents
in each domain into 85% train, 5% validation, and 10% test sets. We repeat this
evaluation 20 times on each dataset with different random train, validation, and test
sets.

We first perform the experiment utilizing the excel features, i.e. we use the excel
features for the baselines and use both stylistic and contextual cell embeddings in
our system. Table 1 shows evaluation scores for this experiment, averaged over 20
experiments. In order to separate the effect of our proposed RNN-based classifier and
cell embeddings, we add two additional systems in our experiments. The first system
uses the stylistic cell embeddings and our proposed RNN-based classifier (RNNS).
The second system uses a random forest classifier on our stylistic and contextual
cell embeddings (RFC+S). Our full system, using both the RNN-based classifier and
stylistic and contextual cell embeddings is referred to as RNNC+S.

We also repeat this experiment for not richly formatted documents, i.e. we only
use the csv features for the baselines and use only contextual cell embeddings in our
full system (RNNC). In order to use the csv features in RNNS, we encode them with
the same auto-encoder structure used for excel features, introduced in section 2.2.
The results for this evaluation is shown in Table 2.

To explain some takeaways from these tables, let us focus on the research ques-
tions we described above.

Do our proposed contextual cell embeddings embed useful information? To
investigate this question, we compare the F1-macro scores when using contextual
embeddings with the cases which do not use contextual embeddings. For the case of



Learning Cell Embeddings for Understanding Table Layouts 17

rich styling (Table 1), random forest classifier results in better performance using our
proposed cell embeddings compared to the cell features in all three dataset. Also, our
proposed RNN-based classifier achieves better performance when utilizing the con-
tetxtual cell embeddings, compared to only stylistic cell embeddings (13% better in
DeEx). When rich styling is not available (Table 2), again our RNN-based classifier
performs better when using the contextual cell embeddings compared to stylistic em-
beddings created for csv features on all three domains (12% better in DeEx dataset).
In this case, random forest classifier performs better with the cell contextual embed-
dings compared with csv features in DeEx dataset, and performs similarly in CIUS
dataset. These results show that the contextual cell embeddings capture useful infor-
mation about the cells in tabular documents, and combining them with cell stylistic
features results in better classification performance specially in complex datasets such
as DeEx.

To further investigate this question, Figure 8 shows a 2D visualization (obtained
using the t-SNE dimension reduction method) of contextual cell embeddings for the
cells in CIUS dataset. The 2D vectors are trained on all the cells in the dataset, but
the visualization shows 10% of data cells, randomly selected. The plot shows clearly
defined clusters, and also shows the difficulty of separating data and derived cells.

How well does our proposed RNN-based classifier perform? To investigate this
question, we compare the performance of our classifier with RF and CRF baseline
classifiers. Both RNN and CRF try to take into account the cell type dependencies in
tabular documents. In all cases in Tables 1 and 2, RNN performs better than RF and
CRF classifiers. When rich styling is not available (Table 2), RNNS performs 43%
and 200% better than RF and CRF respectively, when using the stylistic embeddings
trained on csv features in DeEx dataset. Also, for this case RNNC performs 33%
better than RFC when using the cell embeddings in DeEx dataset. Similar pattern
is observed in the scores for the case of rich styling (Table 1). Our proposed RNN-
based classifier is especially effective for classifying derived cells, and outperforms
RF and CRF classifiers in all cases, except for CIUS dataset in Table 1, on derived
cells. Overall, the results in Tables 1 and 2 suggests that our classifier outperforms
the baseline classification methods, and is able to learn better models, especially in
complex datasets such as DeEx.

How dependent is the classification performance on rich styling? To answer
this question, we first compare the performance of baseline systems on csv and excel
features. The scores for RF on cell features (CF) in Table 1 and 2 show that perfor-
mance of RF degrades when rich styling features are unavailable, especially in DeEx,
where F1-macro is 28% lower. CRF performance also degrades in all three datasets.
Our RNN-based classifier suffers less when the documents lack the styling features,
with about 10% drop in F1-macro score. The results suggest that the performance of
feature based baselines degrades more than our system on documents without rich
styling information.

Next, we analyze performance for different cell types. Comparing results in Ta-
ble 1 and Table 2 suggest that classification of derived cells is difficult without rich
cell styling information. The performance of our proposed system suffer mostly on
derived cell type for all three datasets in Table 2. Derived cells are often similar to
data cells, and are distinguished using styling (e.g. being of formula cell type or be-
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Fig. 8: 2D visualization of cell embeddings for CIUS dataset. The numbers of TA, D,
MD, B, LA, and N points in this plot are 3813, 21210, 911, 6380, 22961, and 782
respectively.

ing bold faced). Classifying top attribute cells and note cells in DeEx also depends
on rich styling features. For example top attribute cells are bold-faced in many cases
and note cells are italic.

To summarize the results of this experiment, Tables 1 and 2 suggests that our
proposed contextual embeddings combined with the RNN-based classifier results in
superior cell classification performance for in-domain training setting.

4.3 Cross-domain evaluation

In the in-domain evaluation setting, we used a large set of annotated documents from
each domain. However, creating such annotated training corpus for every new dataset
needs significant user effort. In this section we assume we have a large training corpus
available from some datasets (train datasets) which we can pre-train the classification
models on. We wish to investigate whether pre-trained models can transfer to a new
dataset (target dataset) with minimal user effort. To this end, we use DeEx plus one
of SAUS or CIUS benchmark datasets as train datasets, and use the other one (SAUS
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or CIUS) as target dataset. Because DeEx dataset has a large diversity of data layouts
and styling compared to SAUS and CIUS datasets, we only use it as part of train
datasets. We evaluate the performance of different systems with varying the number
of annotated training documents available from the target dataset (from 0 to 100).
For each case, we report the average F1-macro scores for repeating the evaluation 20
times, with different random set of training documents from the target dataset.

Our proposed cell embedding and classification models can adjust their weights
iteratively using the back-propagation algorithm. To reduce the user time and effort,
we pre-train the networks for contextual and stylistic embeddings, and RNN-based
classification on the train datasets. We then update the model weights using the doc-
uments from the target dataset.

Our cell embedding method is unsupervised and does not require cell annotations.
We first perform back-propagation for the pre-trained cell embeddings network on the
target dataset for 5 epochs. The back-propagation step takes 10ms per batch of 200
cells in our experiments, so for example training on a target dataset of 1M cells takes
about 4 minutes.

We then use the new cell embedding model, along with annotated training sam-
ples from the target dataset to run back-propagation for 20 epochs for our pre-trained
classification network. The back-propagation step takes about 10ms on each doc-
ument, so for example if there are 100 annotated documents, it takes 20 seconds to
train the classification model on target dataset. Therefore, transferring our pre-trained
models to a new dataset is convenient.

RF and CRF classifiers cannot adjust their models iteratively and need to be
trained at once. We do not consider CRF classifier in this experiment since it takes
long to train (we terminated training after 2 hours, on about 600 documents), and in
our preliminary experiments, it showed very poor performance for transfer learning
scenario. We train RF models on the collection of documents from the train datasets,
and training documents from the target dataset. We give the training documents from
the target document a larger sample weight when training the RF classsifier. Note that
training the RF models only on the train set of the target dataset resulted in worse per-
formance in our preliminary experiments.

Similar to the in-domain setting, we perform the experiments for both when rich
styling is available (excel setting) and when it is not (csv setting). Tables 3 and 4
shows the experiment results for excel and csv settings respectively, for different
number of training documents from the target domains. To explain some takeaways
from these tables, let us focus on the research questions we are investigating.

Can the classification models transfer to a new domain? When no training doc-
uments are available from the target dataset, the performance of all systems degrades
compared to in-domain training setting. The performance of RF baseline degrades
45% for SAUS dataset and csv setting (Table 4). However, in this case our proposed
system (RNNC) suffers less than the RF baseline and its performance degrades by
27%. RNNC performs 46% better than RF baseline on SAUS dataset for csv set-
ting (Table 4). The performance of all systems improves when training samples from
the target dataset are provided. Especially, the performance of RF baseline recovers
steeply, and it outperforms our system for the cases of 5 and 10 training documents on
CIUS dataset. However, with more training data from the target dataset (50 and 100),
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our system outperforms the RF baseline for all cases. Overall, our proposed RNN-
based classifier achieves much better results in transfer learning scenario where no
training data is available from a target domain, which suggests it is able to capture
patterns in the tabular data layout which can be generalized to new datasets.

F1-Macro scores
# target docs 0 1 5 10 50 100

SA
U

S C
F RF (22) 56.0 58.0 72.0 75.5 80.8 82.7

RNNS 67.6 70.7 75.4 78.2 83.6 86.0

C
E RFC+S 66.0 66.9 69.6 71.6 81.1 83.6

RNNC+S 64.3 70.2 75.6 78.6 83.6 85.6
# c 150183 149695 147281 142868 114612 80168

C
IU

S C
F RF (22) 63.1 64.3 84.7 88.0 93.2 94.7

RNNS 71.2 73.6 79.2 81.5 93.4 95.1

C
E RFC+S 68.0 68.7 78.5 88.9 91.2 93.8

RNNC+S 71.3 73.8 80.4 82.8 93.6 95.7
# c 248783 248275 244401 239847 207134 160310

Table 3: Out-domain training scores for excel setting.

F1-Macro scores
# target docs 0 1 5 10 50 100

SA
U

S C
F RF (22) 44.0 56.0 69.7 73.0 77.3 79.3

RNNS 59.2 62.0 68.0 71.9 80.8 83.8

C
E RFC 49.0 51.0 54.5 58.2 67.0 69.9

RNNC 64.5 66.4 68.4 71.2 79.4 82.7
# c 150183 149695 147281 142868 114612 80168

C
IU

S C
F RF (22) 58.0 60.0 75.9 78.9 85.1 87.7

RNNS 66.4 71.1 76.1 78.2 88.8 91.5

C
E RFC 44.0 51.2 56.1 65.1 80.8 85.2

RNNC 67.3 71.1 75.1 77.9 86.7 89.8
# c 248783 248275 244401 239847 207134 160310

Table 4: Out-domain training scores for csv setting.

Do the contextual cell embeddings result in better model transfer? In the in-
domain results, our contextual cell embeddings performed well when used in a sim-
ple random forest classifier, and also improved the performance of our RNN-based
classifier (compared to just using the stylistic embeddings). In the out-domain set-
ting, RFC shows poor performance for both SAUS and CIUS when no or only a few
training documents from the target dataset are available (0, 1, 5, and 10 training doc-
uments). Our RNN-based classifier achieves better performance when using the con-
textual cell embeddings rather than the csv features in SAUS dataset when few train-
ing documents from the target domain are available (0 and 1 in Table 4). However,
RNNC shows similar (or slightly worse) performance compared to RNNS in other
cases in Table 4. It also achieves similar results with or without using the contex-
tual cell embeddings when rich styling is available (compare RNNC+S and RNNS in
Table 3). This can be justified by the fact that contextual embeddings contain seman-
tic information about the cell value (and value of its local context) which is domain
specific. We hypothesize that training the contextual cell embeddings on a larger and
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(a) (b)

(c) (d)

Fig. 9: F1-Macro scores, and number of predicted cell labels for different prediction
probability thresholds for SAUS dataset. The highlighted region around each curve
corresponds to the confidence interval. Evaluation setting is in-domain training. RF
and RNNS both use excel features in this experiment.

more diverse (from different domains) corpus of tabular documents can improve their
generalizability.

4.4 Ablation study

Our evaluation results showed that our proposed cell classification method results in
better performance both in in-domain and out-domain training settings. Our proposed
cell embedding and classification models consists of various steps and components.
In this section, we try to understand the contribution of different components in our
method. To this end, we perform more detailed evaluations on different variants of our
system. In these evaluations, we focus on the in-domain setting with excel features
available on the SAUS dataset. SAUS is challenging, and can differentiate between
various systems better than DeEx and CIUS datasets, according to our evaluation
results in previous section.

We first take a closer look into the in-domain evaluation results in Tables 1 and 2.
Figure 9 shows the classification F1-Macro scores for different cut-off thresholds for
cell class type predictions probability. The curves in Figure 9a and 9b show the aver-
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age F1-Macro over 20 random folds. The purpose of these plots is to determine how
accurate the confident predictions are, for different classification models. The higher
the probability cut-off, we expect the higher F1-Macro score. Also, Figure 9c and
9d show the number of cells predicted by each method, at each probability cut-off.
Larger number of high confidence predictions translate into slower decay in the num-
ber of cells as the cut-off probability threshold increases. Note that RNNC+S, RNNS,
RFC+S and RF use excel features in this experiment. All the RNN curves in Figure
9a are above the RF curves. This suggests our proposed RNN classifier significantly
improves the classification performance. Moreover, using both cell embeddings and
stylistic features (C+ S) results in better scores especially when combined with the
RNN classifier. Our cell embeddings are also suited better to our RNN classifier and
results in better scores compared to stylistic features (Figure 9a).

We now try to evaluate the effect of various parts of our proposed method. More
specifically, we try to answer the following investigative questions:

Are the contextual cell embeddings able to capture extra contextual informa-
tion? Our cell embeddings provide a vector representation for each tabular cell, which
can then be used by the classification model for cell type prediction. To answer this
question, we compare our contextual cell embeddings with two baseline embedding
methods T E, and WE−Avg. T E baseline uses the output of TextEnc module directly
as the cell vectors. WE−Avg baseline takes the average of the embedding vectors for
each words in the cell text as the cell vector representation. Table 5 shows the com-
parison of these three cell vector representations, using RNN and RF classifiers on
SAUS domain and in-domain setting. The results show that our contextual cell em-
beddings result in better classification score especially for RF classifier. WE −Avg
produce zero vectors for many numeric cells (including derived cells) since the nu-
meric tokens are not present in the word embeddings dictionary. We see that all the
derived cells are misclassified when using RF classifier. However, note that the RNN
classifier performs better on derived cells (and subsequently data cells) when using
WE−Avg vectors. This can be due to the fact that our RNN classifier can use long
range dependencies (e.g. the occurrence of the word ”Total” in column header). We
hypothesize that the WE−Avg vectors for such header cells with short text preserve
the semantic information better (note that our cell embeddings use the InferSent mod-
ule) and help the RNN classifier to perform well on derived cells. However, for other
cell types such as top attributes and metadata, this is not the case and RNNC performs
better.

Is the proposed number encoding method effective? To answer this question, Ta-
ble 6 compares the classification scores of RFC and RNNC systems with and without
using the number encoding method. Note that for the case of not using the number
encoding method, numeric cells that are not in the word embeddings dictionary are
treated as empty cells. The results confirms that our number encoding method overall
improves the classification scores especially for derived cells. Note the number en-
coding causes the scores for left attributes and metadata cells slightly degrade. This
is because of the fact that some of the numerical values (such as years) that appear
in these cells are present in the word embedding dictionary which provides a more
semantically rich vector representation than our number encoding method.
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per-class F1 F1-
TA D MD B LA N Macro

SA
U

S
RFC 77.6 97.3 75.3 26.1 90.7 90.2 76.2 ± 3.9*
RFTE 60.75 96.3 71.0 23.75 77.8 89.0 69.8 ± 3.4

RFWE-Avg 37.9 96.1 59.2 0.0 80.3 85.8 59.9 ± 3.1
RNNC 93.8 98.0 90.5 57.3 95.3 94.7 88.3 ± 2.2*
RNNTE 87.1 98.1 91.2 52.3 88.6 91.2 84.7 ± 2.6

RNNWE-Avg 86.6 98.5 78.3 62.4 92.4 91.4 84.9 ± 1.2

Table 5: Classification results for different methods for embedding cell values and
classifying them, using in-domain training setting. The superscripts C, T E, and
WE−Avg respectively correspond to our proposed cell embeddings, the text encod-
ing vectors, and average of embedding vectors for words in cell text.

per-class F1 F1-
TA D MD B LA N Macro

SA
U

S

RFC (w/o number encoding) 67.2 96.1 82.0 4.4 92.3 88.1 71.7 ± 3.4
RFC (w/ number encoding) 77.6 97.3 75.3 26.1 90.7 90.2 76.2 ± 3.9*

RNNC (w/o number encoding) 93.5 97.9 90.5 48.5 95.4 94.7 86.7 ± 2.1
RNNC (w/ number encoding) 93.8 98.0 90.5 57.3 95.3 94.7 88.3 ± 2.2*

Table 6: Evaluation of the effect of our proposed number encoding method in classi-
fication results. The classification scores are for in-domain training setting.

How much the cell embeddings and RNN classifier each contribute to the re-
sults? We saw in our evaluation results that the combination of the cell embeddings
and RNN classifier achieves the best performance in most of cases. To answer which
of the two contribute more to our results, we refer to Table 5. The results suggest
that when using a simple classifier (RF), the contextual cell embeddings outperforms
other cell vector baselines by large margin (27% better compared to RFWE−Avg).
However, when using our RNN classifier, performance gap narrows and RNNC per-
forms 4% better compared to RNNWE−Avg). This result suggests that our RNN classi-
fier is effective in capturing cell dependencies, and our cell embedding method helps
to add extra contextual information which can improve the classification result.

5 Related Work

There is a large amount of recent work investigating spreadsheets and web tables
for different tasks, such as data transformation, relational data extraction, and query
answering. These works often rely on lexical and stylistic features of tabular cells,
and use rule-based or supervised classification techniques. We discuss these works
below.

Several previous works focus on transforming spreadsheets with arbitrary data
layout into database tables. These techniques often use rule based methods for the
transformation. These rules are often engineered (12; 30; 29; 31), user-provided (18),
or automatically inferred (15; 1). While some of these techniques use semantic in-
formation of tabular cells (15), these methods often rely on formatting, styling, and
syntactic features of cells.
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Some previous techniques try to extract relational data from tabular documents.
Bhagavatula et al. proposed a method that relies on the DBpedia knowledge base,
and uses a graphical model to jointly model three semantic interpretation tasks: entity
linking, column type identification and relation extraction from tables (5). Ahsan et al.
proposed a data integration through object modeling framework for spatial-temporal
spreadsheets (3). Eberius et al. introduced a framework for extracting relational data
from spreadsheets (16). Chen et al. introduced a semi-automatic approach using an
undirected graphical model to automatically infer parent-child relationships between
given cell annotations (8). (8; 16) both used manually crafted styling, typographic,
and formatting features to infer tabular data layout, and are similar to the baselines in
our experiments.

There are previous efforts for detecting elements of the data layout, which is the
target task in this paper. Chen et al. (9) used active learning and rules to detect prop-
erties of spreadsheets, such as aggregated columns and merged cells, and integrates
an active learning framework where users can provided rules to save human label-
ing effort. Their method is tuned for special types of tables (dataframes) . Koci et
al. (22) used formatting and typographic features for cell classification, and use the
classification result for layout inference. We used their method as a baseline in our
experiments. They also proposed a graph representation of spreadsheets to identify
layout blocks given imperfect cell layout type labels (20). These cell blocks are then
used to detect tables in documents that contain multiple tables, as proposed in (21).
Unlike our method, these previous techniques do not learn general cell representa-
tions and rely on data-specific stylistic features that may not generalize to new data.

More recently, approaches have been developed using continuous vector repre-
sentations for tabular documents. Ghasemi-Gol et al. (17) proposed a method for
calculating continuous vector representations for classifying web tables. Zhang et
al. (36) introduced a system for finding relevant tables to keyword queries. They
represented queries and tables in multiple semantic spaces (discrete feature space
and continuous dense vector representations), and introduced similarity measures
for matching table and query semantic representations. They used pre-trained word
embeddings, and knowledge graph entity embeddings (for named entities) for their
dense vector representations. Unlike our method, their system does not learn cell rep-
resentations from tabular data itself and only uses pre-trained word and knowledge
graph embeddings. Deng et al. (13) introduced a method for unsupervised training
of continuous representations for various components of relational tables. They in-
troduced word, header, entity, and core entity embeddings, and use their system for
three downstream tasks, row population, column population, and table retrieval. Al-
though similar to our method they use skip-gram model to train their embeddings and
generate cell embeddings for entity and header cells. Unlike our method, they only
consider relational tables with a header row and a core entity column. Our method
is meant for learning general cell representations in tabular documents with complex
layouts. Wu et al. (35) proposed Fonduer, a system for automatic knowledge con-
struction from tabular documents. Their technique has three phases and uses styling,
structural, and semantic information to form relations between values in cells. They
use an RNN-based method in the last phase of their system to validate the candidate
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relations. Unlike our method, they do not use the RNN network to directly classify
all the cells in the document.

6 Conclusion

We introduced a method to generate meaningful vector representations for the cells
in tabular documents, such as spreadsheets, comma separated value files, and web
tables. We proposed contextual cell embeddings that capture local contextual infor-
mation for tabular cells, and also encoded styling information in stylistic cell em-
beddings. We used these cell embeddings to classify the cells in tabular documents
by their roles in the data layout of the document (cell types). To this end, we in-
troduced an RNN-based classification algorithm which captures the dependencies
between cells in the rows as well as columns in tabular documents. We evaluated
the performance of our system on three datasets from different domains (financial,
business, crime, agricultural, and health-care) in two evaluation settings, in-domain
and cross-domain. We compared the performance of our system with two baseline
systems which use manually crafted styling, formatting, and typographic features for
cell type classification.

Our in-domain evaluation results suggested that our proposed contextual cell em-
beddings capture meaningful information about tabular cells, and utilizing them along
with stylistic cell embeddings results in better cell type classification than baseline
methods, especially for datasets containing documents with heterogeneous data lay-
outs and styling conventions. Our evaluations also showed that the baseline methods
are very dependent on rich styling information and perform poorly on documents
which do not contain this information, such as CSV files. For such documents, using
our proposed contextual cell embeddings results in better classification performance.
Our cross-domain evaluations suggest that our RNN-based classifier is able to cap-
ture more general patterns in data layout of tabular documents, and transfers better
than the baselines to new unseen domains with minimal user effort.

Our proposed contextual cell embeddings combined with RNN-based classifier
has the potential to learn complex patterns in tabular data layouts and there is room
for further investigation of its capabilities in future work. We hypothesize that training
the contextual cell embeddings on larger and more diverse (from different domains)
data can result in capturing more domain agnostic regularities in tabular data layout.
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