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ABSTRACT
Publishing data sources to knowledge graphs is a complicated and

laborious process as data sources are often heterogeneous, hierar-

chical and interlinked. As an example, food price datasets may con-

tain product prices of various units at different markets and times,

and different providers can have many choices of formats such

as CSV, JSON or spreadsheet. Beyond data formats, these datasets

may have differing layout, where one dataset may be organized

as a row-based table or relational table (prices are in one column),

while another may use a matrix table (prices are in one matrix).

To address these problems, we present a novel data description

language for mapping datasets to RDF. In particular, our language

supports specifying the locations of source attributes in the sources,

mapping of the attributes to ontologies, and simple rules to join the

data of these attributes to output final RDF triples. Unlike existing

approaches, our language is not restricted to specific data layouts

such as the Nested Relational Model, or to specific data formats,

such as spreadsheet. Our broad data description language presents

a format-independent solution, allowing interlinking among mul-

tiple heterogeneous sources and representing many diverse data

structures that existing tools are unable to handle.
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1 INTRODUCTION
The WWW provides an enormous number of valuable datasets, but

the variety and complexity of these sources creates a barrier to their

widespread use. The recent growth of knowledge graphs as well as
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the Linked Open Data movement have sought to overcome these

barriers by providing the platforms and common semantic conven-

tions to allow data to be semantically defined, interlinked between

sources, and used by all. However, mapping data to RDF to publish

into knowledge graphs demands expertise and significant effort

because datasets are in different formats (e.g., spreadsheets, JSON,

NetCDF) and different layouts (e.g., row-based, matrix, hierarchical

layouts). In this paper, we introduce D-REPR (Dataset Representa-

tion), a rich mapping language that addresses these two challenges

while extending to many datasets that existing approaches (e.g.,

RML [2], XLWrap [4]) cannot easily model.

Many languages and tools have been proposed to make mapping

data easier and less laborious. R2RML and its extensions [2, 6, 8]

can map datasets with heterogeneous formats such as CSV, JSON,

and XML. However, the mapped datasets have to be in a row-based

layout, compliant with the Nested Relational Model (NRM). For

datasets that are not in NRM layout (e.g., Figure 1), format-specific

solutions have been proposed. For instance, XLWrap is a powerful

tool to map spreadsheets to RDF, but cannot deal with other data

formats. No single data mapping tool can handle the diverse set of

data format and data layout choices currently in use.

Having one general RDF mapping language for many types of

data sources is desirable as it currently requires much time and

effort for end-users to learn different tools for different kinds of

sources. However, designing such a language is challenging for

several reasons. First, data sources with different formats have

different protocols to access and refer to data values. Even with

the same data format, data sources can be represented in different

layouts. For example, a life expectancy dataset in CSV format can

organize its data in matrix or in row-based layout (Figure 1a and

1b), or a museum dataset in JSON format can organize its data in a

custom layout or NRM layout (Figure 1c and 1d).

To address these issues, we present a novel data description

language for converting data to RDF. In our approach, users define

locations of source attributes in the dataset using JSONPath, then

create a semantic model that specifies semantic types of attributes

by mapping each attribute to a property of an ontology class, and

semantic relations between them. Finally, users define simple rules

to join attributes to create tables containing instances of ontology

classes. The language also has built-in support for data cleaning

using transformation functions.

The contribution of this paper is a novel data description lan-

guage that makes it easy for mapping format and layout hetero-

geneous datasets to RDF. Our approach is capable of mapping a

wide variety of data sources and goes beyond the set of sources that

existing mapping languages support. Furthermore, the language is

extensible to new formats and new data layouts.

https://doi.org/10.1145/3360901.3364449
https://doi.org/10.1145/3360901.3364449
https://www.unidata.ucar.edu/software/netcdf/
https://goessner.net/articles/JsonPath/


Figure 1: Three datasets that have different formats and layouts. Their data is truncated for readability. In the precipitation dataset,

only the schema is shown.

2 MOTIVATING EXAMPLE AND PROBLEM
REQUIREMENTS

In this section, we provide examples of diversely-structured data

sources to illustrate the challenges of mapping them to RDF, the

limitations of previous mapping methods, and the requirements of

the generic mapping languages.

Figure 1a and 1b show a life expectancy table for the population

of South Sudan
1
in matrix and row-based layouts, respectively. The

original table (Figure 1a) contains observations (green matrix) of

indicators (dark blue column) such as life expectancy. These ob-

servations were collected over several years (light blue row) for

different gender (yellow row) and age groups (orange column). This

original data can be represented in RDF using the Data Cube vocab-

ulary
2
but manually generating this representation is cumbersome

and it is difficult to generate consistently across multiple sources [1].

Specifically, this representation requires dealing with the complex,

nested matrix layout, imputing missing values, such as the implicit

years in the light blue row, and transforming values, such as con-

verting age groups into a range of age values. Task-specific tools,

such as XLWrap and M2, have been developed to map these types

of datasets to RDF, however they cannot be used for all datasets.

Figure 1c and 1d show a second data source formatted in JSON

that contains a list of artworks from the National Portrait Gallery

(NPG). Each artwork also includes information about its creator

and sitters. As XLWrap and M2 do not support JSON data, users

have to rely on extensions of R2RML instead. These extensions are

created to support mapping sources with various formats such as

JSON, XML, RDBMS, etc. However, these extensions are limited to

the layout conventions used in the Nested Relational Model (NRM).

In the original dataset (Figure 1c), the records do not follow the

conventions of the NRM because sitter names and sitter birth dates

are stored in two separated arrays, whose values are associated

1
https://apps.who.int/gho/data/view.main.LT62270

2
https://www.w3.org/TR/vocab-data-cube/

by their orderings. To handle these scenarios, a different system

has to be used to transform the structure of the source into the

layout in Figure 1d (e.g., zip the two arrays to create one array)

using transformation functions as in KR2RML [8].

Figure 1e shows an extreme example of a rainfall dataset, in

which volume of rainfall (precipitation[x][y][z]) is recorded at a

specific location (latitude[x], longitude[y]) and at a specific time

(time[z]). This dataset is one of many scientific datasets that have

customized layout for efficiently storing or manipulating the data.

Since sharing scientific knowledge can accelerate new findings, it

is important that we be able to easily map these datasets to RDF.

As no existing generic mapping language can handle all five

examples above, users have to spend significant effort learning

to use different tools for different kinds of sources. As we have

discussed in the previous section, one reason is the existing generic

languages lack the ability to express the layout of data sources.

This poses a new requirement that the languages need to support.

Together with the requirements from [2, 5, 6], we create a list of 6

important requirements that the generic mapping language should

meet as follows.

R1 Map sources with heterogeneous formats and be extensible

to new data formats.

R2 Map sources with heterogeneous layouts and be extensible

to custom layouts.

R3 The language is uniform so that extending to new for-

mats and layouts only requires changes in the implementation (e.g.,

adding plugins), but not in the language itself.

R4 Support interlinking across sources, e.g., generating links

between individuals of different classes.

R5 Support cleaning and transforming data.

R6 Support general mapping RDF functionalities, e.g., specify-

ing the data types and used ontologies, generating blank nodes.

Based on the above requirements, in the next section, we will

describe D-REPR, a new mapping language, that addresses the

above use cases and supports a broad set of capabilities.

https://apps.who.int/gho/data/view.main.LT62270
https://www.w3.org/TR/vocab-data-cube/


3 DATASET REPRESENTATION LANGUAGE
In this section, we describe our dataset representation language

(D-REPR) and its usage in the context of a sample dataset in Figure 2.

The sample dataset contains a CSV file that is similar to the life

table in Figure 1a, except that the indicator column contains the

indicator code. The dataset has another JSON file that has the

indicators’ definitions.

Figure 2: A sample life table dataset.

Modeling a dataset in D-REPR requires defining four basic com-

ponents: resources, attributes of data sources, a semantic model

that maps the attributes to properties of ontology classes, and rules

to join values of these attributes.

In addition, many data sources have useful data invariants (e.g.,

missing values) or benefit from pre-processing functions that D-

REPR also supports. Listing 1 shows an overview of the D-REPR syn-

tax for modeling dataset. We use YAML as it is concise and human-

friendly to write. However, the D-REPR specification can also be

expressed in other languages such as JSON.

3.1 Resources and attributes of the dataset
Resources. The first step of defining a dataset is describing its

resources. A dataset may consist of many, interdependent logical

resources such as codebooks or data-definition dictionaries. These

logical resources are defined under a section titled resources. Each

resource is associated with a user-defined name and a format. In

the sample dataset, we have two resources: a life table and a list of

indicators, whose definitions are in Listing 2.

Different data formats have different ways of referring to data

elements. For example, XML and JSON documents have XPath and

JSONPath, respectively, or CSV and Spreadsheet can refer to cells

by sheet name, row and column number. In addition, query results

from relational and non-relational database such as graph databases

can also be manipulated using well-known formats such as JSON

or row-based table. Therefore, it is safe to view resource’s data as a

general tree structure similar to JSON tree. For example, a dataset in

the NetCDF format can be viewed as a JSON object, where variables

in the dataset are properties of the object, values of the variables

(multi-dimensional arrays) are nested JSON arrays. Similarly, a CSV

table can also be viewed as a nested JSON array.

Viewing resource’s data as a tree has several benefits. First, it

facilitates downstream tasks such as data cleaning to be indepen-

dent of the data formats. Second, it enables users to use one single

resources:

<resource_id>:

type: <resource_type>

# ..optional arguments depend on the resource type..

# ..other resources..

[preprocessing]:

- type: <function type>

input:

[resource]: <resource_id>

path: <json_path>

[output]: <new_resource_id>

[code]: <code>

# ..other transformation functions..

attributes:

<attribute_id>:

[resource_id]: <resource_id>

path: <json_path>

[unique]: false

[missing_values]: [<value_0>, <value_1>, ...]

# ..other attributes..

alignments:

- type: <join_type>

source: <attribute_id>

target: <attribute_id>

# ..optional arguments depend on the alignment type..

# ..other alignments..

semantic_model:

data_nodes:

<attribute_id>: <class_id>--<predicate>[^^<data_type>]

# ..other attributes..

[relations]:

- <source_class_id>--<predicate>--<target_class_id>

# ..other relations..

[subjects]:

<class_id>: <attribute_id>

# ..other subjects..

[prefixes]:

<prefix>: <iri>

# ..other prefixes..

Listing 1: The D-REPR YAML syntax to describe a
dataset. Optional properties are surrounded by brackets

(e.g., [missing_values] is optional)

query path language such as JSONPath to refer to a resource’s el-

ements. Finally, it reduces the implementation effort as we only

need to implement one path language per format. This is differ-

ent from other generic mapping languages such as RML [2] or

xR2RML [6] as they allow users to use various path languages via

rml:referenceFormulation.

We use JSONPath expressions to select data regions in a resource.

The query starts with $ as the root of a resource. To select a child



resources:

life_tbl:

type: csv

delimiter: ","

indicators:

type: json

Listing 2: Resources’ definition of the sample dataset

of the current element, we use .<key> or [<key>]. To select a range of

child nodes, we use the array slice operator [<start>:<end>:<step>].

To select all child nodes, we use either .* or [*]. For example, in-

dicator urls in the JSON resource can be retrieved by $[*].url or

$[:].url, and observations (green cells) in the life table can be

selected by $[2:][2:].

Attributes. The next element in the D-REPR language is a block of

attributes that designates specific data attributes found in the data

source. Each attribute is first defined by providing a unique, human-

readable name. Next, each attribute is associated with a spatial

location where the attribute is physically located. The location

includes both resource_id and path, which is a path expression to

its values in the resource using the JSONPath.

In addition to specifying the location of an attribute, the D-

REPR specification can optionally include particular values that

attributes:

year:

resource_id: life_tbl

path: $[0][2:]

gender:

resource_id: life_tbl

path: $[1][2:]

indicator_column:

resource_id: life_tbl

path: $[2:][0]

age_group:

resource_id: life_tbl

path: $[2:][1]

observation:

resource_id: life_tbl

path: $[2:][2:]

indicator:

resource_id: indicators

path: $.*.indicator

unique: true

url:

resource_id: indicators

path: $.*.url

unique: true

Listing 3: Attributes’ definition of the sample dataset

should be interpreted as missing values (e.g., -999) in the missing_-

values property. It can also specify whether values of an attribute

are unique by setting the unique property to be true (e.g., the in-
dicator attribute contains all unique values). Listing 3 shows the

definition of the attributes of the sample dataset.

3.2 Semantic model of the dataset
After identifying resources and source attributes, we specify the

semantic model for mapping data to RDF. The semantic model is

a graph, in which internal nodes are ontology classes, leaf nodes

are attributes (also called data nodes) and edges are ontology pred-

icates. The model can be defined under the semantic_model block

in Listing 1. Figure 3 depicts a semantic model and a subset of the

generated RDF triples of the sample dataset.

The first step in defining the semantic model is to associate

each attribute with a semantic type, which is a pair of an ontology

class C and an ontology predicate p, denoted as ⟨C,p⟩. This creates
predicate-object pairs for each instance of the ontology class C. The

subject of each instance is created from the other attribute whose

semantic type is of the same class C and uses a particular predicate

drepr:uri. If there is no such attribute, then the instances will be

blank nodes. We sometimes refer to attributes that are mapped

to properties of a class as attributes of the class for short. For in-

stance in Figure 3, the semantic type of the attribute observation
is defined as "qb:Observation:1--sdmx-m:obsValue^^xsd:decimal"

semantic_model:

data_nodes:

observation: qb:Observation:1--sdmx-m:obsValue^^xsd:decimal

year: qb:Observation:1--sdmx-d:refPeriod

age_group: qb:Observation:1--eg:ageGroup

gender: qb:Observation:1--sdmx-d:sex

indicator: eg:Indicator:1--eg:code

url: eg:Indicator:1--drepr:uri

relations:

- qb:Observation:1--eg:indicator--eg:Indicator:1

prefixes:

qb: http://purl.org/linked-data/cube#

sdmx-m: http://purl.org/linked-data/sdmx/2009/measure#

sdmx-d: http://purl.org/linked-data/sdmx/2009/dimension#

eg: http://example.org

subjects:

"qb:Observation:1": observation

"eg:Indicator:1": indicator

Figure 3: A semantic model of the sample dataset



means that it is associated with a pair of ontology class and pred-

icate ⟨qb:Observation, sdmx-m:obsValue⟩ and with the data type

xsd:decimal. Notice in the definition, we have the ontology classes

appended with an extra number (qb:Observation:1), which are used

as identifiers to uniquely identify the class node. The reason is that

there can be multiple class nodes that have the same label in the

semantic model. For instance, in the NPG museum dataset, we have

two foaf:Person classes, one is for creators of the artworks, one is

for sitters in the artworks.

In addition to semantic types, semantic relations between in-

stances are determined by edges (labeled with ontology predi-

cates) between their classes. We can specify the semantic rela-

tions under the relations property. For example, the relationship

eg:indicator of the qb:Observation and eg:Indicator is specified

as "qb:Observation:1--eg:indicator--eg:Indicator:1". Together

with the semantic types defined in the data_nodes section, they

form a graph of the semantic model as in Figure 3.

Moreover, as the IRIs of ontology classes and predicates are quite

wordy, D-REPR allows users to use prefixed names similar to the

Turtle language. The list of prefix labels and their corresponding

IRIs are defined under the prefixes property.

Finally, D-REPR and other mapping languages assume that for

each ontology class, there is at least one attribute whose values

are in one-to-one correspondence with the instances of the class.

In other words, we can iterate through the values and generate

instance one by one. We say this attribute is the subject attribute

of the class. In D-REPR, these subject attributes can usually be

inferred automatically as shown in Section 4.1. This eases the task

of updating the semantic model of the dataset, which occurs quite

frequently in publishing datasets as 5-star LinkedData [3]. However,

users can explicitly specify them in the subjects property (Figure 3).

3.3 Joining the values of attributes of a dataset
After users define the attributes in the dataset, the values of each

attribute are retrieved and represented as an array. Because there

is no alignment between these arrays, to generate instances of an

ontology class, we need to join together values of the attributes

that were mapped to the properties of a class. Figure 4 illustrates

how attributes in the sample dataset should be joined. In particular,

observation and gender are joined by their column position, obser-
vation and indicator_column are joined by their row position, and

indicator_column and indicator are joined by their values.

In D-REPR, a list of joins between the attributes is declared un-

der the section titled alignments (Listing 1). Each join is required

to define three properties, which are join type (type) and the two

attributes involved in the function (source and target). D-REPR cur-

rently supports two join functions: joining by values (called value

join) and by value position in the resources (called position join).

The types for the two functions are value and dimension, respec-

tively.

Value join is a traditional equity join in SQL. A value join only

requires a source and target. Figure 4 shows an example of a value

join between the indicator_column and indicator attributes.
Position join combines values if their positions are matched. A

position of an attribute’s value is a path to the value in the resource,

andwe refer to each item at index i in the path as dimension i . For ex-
ample, the age group "1-4 years" is at position p = [3, 1], the value

alignments:

- type: dimension

source: observation

target: gender

aligned_dims: [{ source: 1, target: 1 }]

- type: dimension

source: observation

target: indicator_column

aligned_dims: [{ source: 0, target: 0 }]

- type: value

source: indicator_column

target: indicator

- type: dimension

source: indicator

target: url

aligned_dims: [{ source: 0, target: 0 }]

# .. more joins

Figure 4: Joining between the attributes in the sample
dataset. Similar joins between ⟨observation, year⟩ and ⟨observation,
age group⟩ were omitted for readability

of dimension 0 is p[0] = 3 and the value of dimension 1 is p[1] = 1.

Given a set of pairs of aligned dimensions S = {(x1,y1), (x2,y2), ...},
in which xi , yi are dimensions of attribute x and y, respectively,
two positions px and py of x andy are considered as matched when

∀(xi ,yi ) ∈ S :

py [yi ]−ystart

i

ystep

i
=

px [xi ]−x start

i

x step

i
, where xstarti and x

step

i

are start and step of a range index of dimension xi . A position join

takes an extra property, which is the set S in aligned_dims property.

An example of a position join is a join between indicator and url in
Figure 4, where the aligned dimensions are [{ source: 0, target:

0}], which means a value of indicator at position [1, indicator]

only matches with a value of url at [1, url] not at [0, url].

Given a list of joins, instances of an ontology class are created by

first creating a single column table of its subject attribute. Then, we

sequentially join every other attribute of the class to the table using

the join function between the attribute and the subject attribute.

Recall that values of the subject attribute are assumed to have a one-

to-one correspondence to instances of the class. Therefore, the size

of the joined table does not change after each attribute is added and

each row in the table contains one instance of the class. For example,

the table of the class qb:Observation is created by joining the subject

attribute observation and gender, then joining indicator_column to

the table (Figure 4). This requires users to define n−1 joins between



subject attributes and other attributes for n attributes. However, as

we discussed in the previous section, subject attributes are usually

inferred automatically. Therefore, users may inadvertently define

join functions of non-subject attributes. For example, in the sample

dataset, a user might define join functions between ⟨observation,
gender⟩ and ⟨gender, year⟩. A join function between ⟨observation,
year⟩ is missing, but D-REPR can complete missing join functions

between subject and non-subject attributes, which is described in

Section 4.1. As a result, users can focus on specifying the alignments

betweenn−1 pairs of attributes that explain the layout of the dataset.
If D-REPR cannot infer missing functions, the system will ask users

to provide the correct definitions.

3.4 Data cleaning and data transformation
We use transformation functions to facilitate data cleaning and

data transformation. D-REPR defines a list of transformation func-

tions under the preprocessing keyword as shown in Listing 1. These

functions are executed sequentially before the mapping process

starts. Each function is applied to a data region specified in the

input property using the JSONPath. If the output property is also

defined, the function runs and produces new data stored in the

new resource. Otherwise, the function runs and mutates data in

the input region. The optional code property allows users to write

one-time-use ad-hoc data cleaning code. Transformation functions

in external libraries can also be used by importing them to the

D-REPR processor and specifying their IDs in the type property.

Hence, users can reuse transformation functions across datasets.

One concrete example of the above transformation functions

is the mapping function implemented in the prototype of the D-

REPR processor. The function maps each data element in the input

property to a new data element using python code defined in the

code property. The python code takes three arguments ⟨value, index,

context⟩ and computes and returns a new value. The value variable

is the value of the current data element, the index variable is the

element’s position, and the context variable is a python helper

object that has some methods to query resource data. Listing 4

shows an illustration of themapping function for the sample dataset.

In the example, we use a method context.get_left_value(index)

to access to the element on the left of the current element (e.g., given

the index is [0, 3], the method returns value at position [0, 2]).

preprocessing:

- type: pmap

input:

resource: life_tbl

path: $[0][2:]

code: |

if value == "":

return context.get_left_value(index)

return value

Listing 4: A transformation function for the sample dataset,
it replaces empty light blue cells (years) with values in the
left cells

4 IMPLEMENTATION AND EVALUATION
In this section, we describe one possible implementation of the D-

REPR specification and evaluate the ability of D-REPR to map real-

world datasets in different formats and layouts. A prototype of the

D-REPR processor
3
is available online for evaluation. We compare

the runtime between the prototype of the D-REPR processor and

popular processors of R2RML extensions to evaluate the ability of

the D-REPR processor to handle large datasets.

4.1 Algorithm for RDF generation
In this implementation, the D-REPR processor generates RDF in

three steps. First, the system create execution plans that determine

the order for generating instances of the ontology classes in the

semantic model. In case users do not provide the subject attributes,

the system will infer the subject attributes of these classes and

determine missing join functions between the subject attributes and

the non-subject attributes. The next step is to execute preprocessing

functions one by one. Finally, the system iterates through each

ontology class in the semantic model and outputs their instances.

To generate instances of a class, we need to join the values of

the attributes of the class. A join function f between attribute ai
and aj (f : ai → aj ) has an abstract interface as follows:

f (di ∈ Vi ) = {dj |dj ∈ Vj }

in whichV∗ is a list of pairs of values and value positions of attribute
a∗. The function f takes an element di of Vi of attribute ai and
return a set of elements of aj matched with di . For example, in

the sample dataset, V
gender

of attribute gender is [("male", [1,

2]), ("female", [1, 3])]. Given a value di = ("male", [1, 2]) ∈

V
gender

, the join function f : gender → observation will return

a set {(57.7, [2, 2]), (60.6, [3, 2])}. This abstract interface

enables us to hide the details of the join function (such as value

join or position join) and its implementation (such as hash join or

sort-merge join), and enables us to incorporate new join functions

easily.

Given a subject attribute and a list of join functions between the

subject attribute and other attributes of a class, we can generate

instances of the class using Algorithm 1. Specifically, the algorithm

iterates each value of the subject attribute to create one instance and

uses the join functions to get properties of the instance (lines 4 - 6).

Inferring subject attributes. The next step is to infer a subject

attribute of a class and missing join functions between attributes.

Let A = {a1,a2, ...,an } be a set of attributes of class C . We have

a ∈ A is a subject attribute of C , if and only if for every pair of

attribute a and ai ∈ A, the degree of relationship is one-to-one or

many-to-one (i.e., the join function f between a and ai satisfies:
∀di ∈ V : | f (di )| ≤ 1). Indeed, if we join all ai ∈ A with a, every
row in the result table is unique, and the table contains all possible

instances of the class C in the dataset. Therefore, a is the subject

attribute of C .
If there is no such attribute in A, we may try to pick another

attribute a′ in the dataset such that its degree of relationship with

every attribute ai ∈ A is one-to-one or many-to-one. This condi-

tion is similar to the above rule. However, with a′, the joined table

3
https://github.com/usc-isi-i2/d-repr

https://github.com/usc-isi-i2/d-repr


Algorithm 1: Generating Instances Of a Class

Input: A subject attribute of class C: a
A list of values and their positions of a: Va
A hash map from an attribute ai of C to a join function

between a and ai : F = {ai → f }
Output: List of instances of class C

1 instances← []

2 for d ← Va do
3 instance← {}

4 for f ← F do
5 ai ← target variable of f

6 instance.ai = f (d)

7 instances.append(instance)

8 return instances

now has an extra column a′. To obtain the table of instances of C ,
we have to remove column a′, and potentially filter out duplicated

instances in the table. If there are no duplicates, a′ can be chosen

as the subject attribute of C .
We can determine the cardinality between two attributes based

on the join function between them, conservatively. If attributes a1
and a2 are joined by value, and values of a1 or a2 are unique, then
their degree of relationship is either one-to-* or *-to-one. If none of

them are unique, their cardinality is many-to-many. For example,

in the sample dataset, the cardinality between indicator_column
and indicator is many-to-one. The cardinality of position join is

computed based on non-aligned dimensions between two attributes.

For example, in the sample dataset, observation (location: $[2:][2:])
and year (location: $[0][2:]) have one aligned dimension (dimen-

sion 1). Because the dimension 0 of observation is specified by the

array slice operator ([2:]), their cardinality is many-to-one. How-

ever, the degree of relationship between year and gender (location:
$[1][2:]) is one-to-one as their first dimensions are specified by

array index operators ([0] and [1]).

Chaining join functions between attributes. Suppose that users
define join functions of ⟨a1,a2⟩ and ⟨a2,a3⟩. However, they do not

specify any rule to join attributes a1 with a3. If the cardinality of

⟨a1,a2⟩ is either one-to-many or one-to-one, or the cardinality of

⟨a2,a3⟩ is either many-to-one or one-to-one, we can compute the

join function of a1 and a3 as a chained join function that combines

of a1 and a2 to obtain tableT1(a1,a2), before joining a3 withT1. The
intuition is that it is the only possible alignment between values of

a1 and a3 which is consistent with the two defined join functions.

The chained join is illustrated in Figure 5a. An example in Figure 5b

shows that we cannot infer the join function of a1 and a3 when the

cardinality of ⟨a1,a2⟩ is many-to-one and ⟨a2,a3⟩ is one-to-many.

4.2 Evaluation
To assess the capabilities of D-REPR to model datasets in different

formats and layouts, we crawled 10,000 public datasets on data.gov,

then filtered and randomly sampled 700 datasets in CSV, JSON, XML,

Spreadsheet and NetCDF formats. Within these 700 datasets, we

manually selected distinct datasets of different formats or layouts,

(a) Only one possible table
created from the join be-
tween attributes a1 and a3

(b) Cannot infer how to join a1 and
a3 because there is more than one
possible result

Figure 5: Chaining join functions between attributes ⟨a1,a2⟩
and ⟨a2,a3⟩

as datasets in the same format and layout will have similar D-

REPR models. The resulting datasets are diverse
4
. For example,

some of them have complex layouts, such as nested JSON arrays

with column definitions in another property (Figure 6a). Data in

some datasets also need cleaning (e.g., date-time reformatting or

extracting hierarchical structure from a column (Figure 6b)). In

order to handle all of the datasets, a mapping language is required

to satisfy the 6 requirements in Section 2. We are able to build

D-REPR models for all of them, demonstrating that our language

meets the requirements.

To verify that the D-REPR processor can handle large datasets,

we compare the runtime of our prototype with two popular proces-

sors of R2RML extensions (KR2RML [8] and Morph
5
) on the task of

mapping large CSV files (NRM layout). All CSV files contain people

information (e.g., name, phone and address). The only difference

between these files is the number of records. Our experiments are

run on a Macbook Pro, Intel i7-7660U with 16GB RAM. The average

runtime is reported in Table 1. The runtime of the D-REPR pro-

cessor increases linearly with the number of records. On average,

it can generate 1.3 million triples per second, which is 15 times

faster than KR2RML. The reasons that D-REPR is fast are its core

engine is implemented using the Rust language; RDF triples are

4
The experiments are available at http://purl.org/tty1/drepr-exp

5
https://github.com/oeg-upm/morph-rdb

Figure 6: Examples of datasets with complex layouts in
data.gov. In figure (a), data is in nested JSON array where each

column definition is defined in the columns property (40 columns).

Figure (b) is a dataset that has hierarchical structure (green column).

https://www.data.gov/
https://www.rust-lang.org
http://purl.org/tty1/drepr-exp
https://github.com/oeg-upm/morph-rdb


Table 1: Average running time (ms) of D-REPR and popular
processors of R2RML extensions

Number of records

Tools 5,000 10,000 20,000 40,000 80,000

D-REPR 33.44 69.84 132.00 267.50 551.24

KR2RML 1368.00 1776.33 3276.66 4990.33 8305.33

Morph 4812.00 14949.66 65961.33 - -

generated using a streaming approach; and it leverages properties

of attributes to generate an efficient execution plan (e.g., missing

value checks are not needed if there are no missing values).

5 RELATEDWORK
There are many proposed mapping languages or tools to transform

data sources into RDF. W3C communities have listed many of them

on their website. We can classify them into three different groups.

The first group of tools is specific to certain formats and struc-

tures such as bibtex2rdf, or email2rdf. As they are designed for one

particular type of source, they may be the most effective tools to

generate RDF for that source, but they do not apply to other source

formats.

The second group is languages that work with tabular data. It is

hard to convert tabular data as they have arbitrary ways of storing

and representing data. XLWrap [4] is the language designed for

mapping spreadsheets with various layouts to RDF. Users first

describe a template graph similar to a semantic model, in which

leaf nodes (known as data nodes) are bound to cells in the table.

Then, they define a transformation operation that shifts rows and

columns in the spreadsheet such that after every shift, the data

nodes in the template graph are bound to new values and produces

a new instance. Corcho et al. [7] present the M
2
language, which

uses the Manchester Syntax for converting data from spreadsheets

into OWL. The language is less verbose than XLWrap and also able

to handle many different tabular layouts. The main drawback of

these mapping languages is although they can map datasets with

heterogeneous layouts, they are limited to only tabular formats

such as CSV or spreadsheets.

The third group contains generic mapping languages for inte-

grating heterogeneous data sources. Dimou et al. [2] propose RML,

an extension over R2RML, for mapping data sources with different

formats and interlinking between sources. In particular, users de-

scribe logical sources and their formats, iterators to iterate through

records in the sources, and how to map each record’s attributes.

Michel et al. [6] introduce xR2RML that extends R2RML and RML

to support different types of databases from relational databases to

non-relational databases such as Cassandra or MongoDB. Slepika

et al. [8] present another extension of R2RML, KR2RML. Similar to

xR2RML, it supports heterogeneous hierarchical sources. KR2RML

also allows users to perform data cleaning or modifying data struc-

tures so that users can model noisy hierarchical data sources such

as the NPG museum dataset (Figure 1c). Lefrançois et al. [5] de-

velop SPARQL-Generate based on a SPARQL that allows querying

a combination of RDF and non-RDF sources. Although the listed

languages are capable of handling data sources with heterogeneous

formats, the main difference between them and D-REPR is that they

only work with the NRM layout.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a novel dataset representation language,

D-REPR, for mapping data to RDF. To handle datasets with hetero-

geneous formats, the language enables users to use JSONPath to

select values of each dataset attribute. With datasets in different

layouts, it allows users to describe join rules to combine the values,

which capture the data alignments within each layout. Users can

specify ontology classes and predicates that the data should be

mapped to using semantic models. The language also supports data

cleaning and data transformation using pre-processing functions.

The language is designed to be extensible. We can add a new data

format by implementing the JSONPath for the format. We can also

incorporate a new join rule by implementing the abstract interface

of the join function.

In future work, we plan to improve the efficiency of D-REPR’s

engine for transforming data to RDF by partitioning resource data

into small batches and executing the mapping operation in parallel.

We also plan to develop machine learning approaches for creating

and suggesting D-REPR models. Finally, we plan to build a web

interface that can be integrated into open data platforms in which

users can register a dataset and build a representation for it. That

will encourage people to publish many more data sources in RDF.
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