
Knowledge and Information Systems (2019) 61:1547–1581
https://doi.org/10.1007/s10115-018-1246-2

REGULAR PAPER

Collective entity resolution in multi-relational familial
networks

Pigi Kouki1 · Jay Pujara1 · Christopher Marcum2 · Laura Koehly2 · Lise Getoor1

Received: 15 January 2018 / Revised: 21 April 2018 / Accepted: 9 June 2018 / Published online: 15 September 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Entity resolution in settings with rich relational structure often introduces complex depen-
dencies between co-references. Exploiting these dependencies is challenging—it requires
seamlessly combining statistical, relational, and logical dependencies. One task of particular
interest is entity resolution in familial networks. In this setting, multiple partial representa-
tions of a family tree are provided, from the perspective of different family members, and
the challenge is to reconstruct a family tree from these multiple, noisy, partial views. This
reconstruction is crucial for applications such as understanding genetic inheritance, tracking
disease contagion, and performing census surveys. Here, we design amodel that incorporates
statistical signals (such as name similarity), relational information (such as sibling overlap),
logical constraints (such as transitivity and bijective matching), and predictions from other
algorithms (such as logistic regression and support vector machines), in a collective model.
We show how to integrate these features using probabilistic soft logic, a scalable probabilistic
programming framework. In experiments on real-world data, our model significantly outper-
forms state-of-the-art classifiers that use relational features but are incapable of collective
reasoning.

Keywords Entity resolution · Data integration · Familial networks · Multi-relational
networks · Collective classification · Family reconstruction · Probabilistic soft logic

B Pigi Kouki
pkouki@soe.ucsc.edu

Jay Pujara
jay@cs.umd.edu

Christopher Marcum
chris.marcum@nih.gov

Laura Koehly
koehlyl@mail.nih.gov

Lise Getoor
getoor@soe.ucsc.edu

1 School of Engineering, University of California Santa Cruz, Santa Cruz, USA

2 National Human Genome Research Institute, National Institutes of Health, Bethesda, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-018-1246-2&domain=pdf
http://orcid.org/0000-0003-3265-9080

1548 P. Kouki et al.

1 Introduction

Entity resolution, the problem of identifying, matching, and merging references correspond-
ing to the same entity within a dataset, is a widespread challenge in many domains. Here, we
consider one particularly compelling application: the problem of entity resolution in familial
networks, which is an essential component in applications such as social network analy-
sis [17], medical studies [24], family health tracking and electronic healthcare records [18],
genealogy studies [12,25] and areal administrative records, such as censuses [34]. Familial
networks contain a rich set of relationships between entities with a well-defined structure,
which differentiates this problem setting from general relational domains such as citation
networks that contain a fairly restricted set of relationship types.

As a concrete example of entity resolution in familial networks, consider the healthcare
records for several patients from a single family. Each patient supplies a family medical
history, identifying the relationship to an individual and their symptoms. One patient may
report that his 15-year-old son suffers from high blood sugar, while another patient from the
same family may report that her 16-year-old son suffers from type 1 diabetes. Assembling a
complete medical history for this family requires determining whether the two patients have
the same son and are married.

In this setting, a subset of family members independently provide a report of their familial
relationships. This process yields several ego-centric views of a portion of a familial network,
i.e., persons in the family together with their relationships. Our goal is to infer the entire
familial network by identifying the people that are the same across these ego-centric views.
For example, in Fig. 1 we show two partial trees for one family. In the left tree, the patient
“Jose Perez” reported his family tree and mentioned that his 15-year-old son, also named
“Jose Perez,” has high blood sugar. In the right tree, the patient “Anabel Perez” reported her
family tree and mentioned that her 16-year-old son suffers from type 1 diabetes. In order to
assemble a complete medical history for this family, we need to infer which references refer
to the same person. For our example trees, we present in Fig. 2 the resolved entities indicated
by the same shades. For example, “Ana Maria Perez” from the left tree is the same person
with “Anabel Perez” from the right tree. Our ultimate goal is to reconstruct the underlying
family tree, which in our example is shown in Fig. 3.

Typical approaches to performing entity resolution use attributes characterizing a reference
(e.g., name, occupation, age) to compute different statistical signals that capture similarity,
such as string matching for names and numeric distance for age [34]. However, relying

Fig. 1 Two familial ego-centric trees for family F . Bold black borders indicate the root of the tree, i.e., the
root of tree a is “Jose Perez” and the root of tree b is “Anabel Perez”

123

Collective entity resolution in multi-relational familial networks 1549

Fig. 2 The two familial ego-centric trees for family F with resolved entities. Persons in same shade represent
same entities, e.g., “Ana Maria Perez” from tree (a) and “Anabel Perez” in tree (b) are co-referent. White
means that the persons were not matched across the trees

Fig. 3 The aggregated family tree for family F

only on attribute similarity to perform entity resolution in familial networks is problematic
since these networks present unique challenges: attribute data are frequently incomplete,
unreliable, and/or insufficient. Participants providing accounts of their family frequently
forget to include family members or incorrectly report attributes, such as ages of family
members. In other cases, they refer to the names using alternate forms. For example, consider
the two ego-centric trees of Fig. 1. The left tree contains one individual with the name “Ana
Maria Perez” (age 41) and the right one an individual with the name “Anabel Perez” (age
40). In this case, using name and age similarity only, we may possibly determine that these
persons are not co-referent, since their ages do not match and the names vary substantially.
Furthermore, even when participants provide complete and accurate attribute information,
this information may be insufficient for entity resolution in familial networks. In the same
figure, the left tree contains two individuals of the name “Jose Perez,” while the right tree
contains only one individual “Jose Perez.” Here, since we have a perfect match for names
for these three individuals, we cannot reach a conclusion which of the two individuals of
the left tree named after “Jose Perez” match the individual “Jose Perez” from the right tree.
Additionally, using age similarity would help in the decision; however, this information is
missing for one person. In both cases, the performance of traditional approaches that rely on
attribute similarities suffers in the setting of familial trees.

123

1550 P. Kouki et al.

In this scenario, there is a clear benefit from exploiting relational information in the
familial networks. Approaches incorporating relational similarities [5,10,20] frequently out-
perform those relying on attribute-based similarities alone.Collective approaches [32] where
related resolution decisions are made jointly, rather than independently, showed improved
entity resolution performance, albeit with the tradeoff of increased time complexity. General
approaches to collective entity resolution have been proposed [30], but these are generally
appropriate for one or two networks and do not handle many of the unique challenges of
familial networks. Accordingly, much of the prior work in collective, relational entity resolu-
tion has incorporated only one, or a handful, of relational types, has limited entity resolution
to one or two networks, or has been hampered by scalability concerns.

In contrast to previous approaches, we develop a scalable approach for collective relational
entity resolution across multiple networks with multiple relationship types. Our approach is
capable of using incomplete and unreliable data in concert with the rich multi-relational
structure found in familial networks. Additionally, our model can also incorporate input
from other algorithms when such information is available. We view the problem of entity
resolution in familial networks as a collective classification problem and propose amodel that
can incorporate statistical signals, relational information, logical constraints, and predictions
from other algorithms. Ourmodel is able to collectively reason about entities across networks
using these signals, resulting in improved accuracy. To build our model, we use probabilistic
soft logic (PSL) [2], a probabilistic programming framework which uses soft constraints
to specify a joint distribution over possible entity matchings. PSL is especially well suited
to entity resolution tasks due to its ability to unify attributes, relations, constraints such as
bijection and transitivity, and predictions from other models, into a single model.

We note that thiswork is an extended version of [22].Our contributionsmirror the structure
of this paper:

– We formally define the problem of entity resolution for familial networks (Sect. 2).
– We introduce a process of normalization that enables the use of relational features for

entity resolution in familial networks (Sect. 3).
– We develop a scalable entity resolution framework that effectively combines attributes,

relational information, logical constraints, and predictions fromother baseline algorithms
(Sect. 4).

– We perform extensive evaluation on two real-world datasets, from real patient data from
the National Institutes of Health and Wikidata, demonstrating that our approach beats
state-of-the-art methods while maintaining scalability as problems grow (Sect. 5).

– We provide a detailed analysis of which features are most useful for relational entity
resolution, providing advice for practitioners (Sect. 5.3.1).

– We experimentally evaluate the state-of-the-art approaches against our method, compar-
ing performance based on similarity functions (Sect. 5.4), noise level (Sect. 5.5), and
number of output pairs (Sect. 5.6).

– We provide a brief survey of related approaches to relational entity resolution (Sect. 6).
– We highlight several potential applications for our method and promising extensions to

our approach (Sect. 7).

2 Problem setting

We consider the problem setting where we are provided a set of ego-centric reports of a
familial network. Each report is given from the perspective of a participant and consists

123

Collective entity resolution in multi-relational familial networks 1551

of two types of information: family members and relationships. The participant identifies
a collection of family members and provides personal information such as name, age, and
gender for each person (including herself). The participant also reports their relationships to
each family member, which we categorize as first-degree relationships (mother, father, sister,
daughter, etc.) or second-degree relationships (grandfather, aunt, nephew, etc.). Our task is
to align family members across reports in order to reconstruct a complete family tree. We
refer to this task as entity resolution in familial networks and formally define the problem as
follows:

Problem definition We assume there is an underlying family F = 〈A,Q〉 which con-
tains (unobserved) actors A and (unobserved) relationships Q among them. We define
A = {A1, A2, . . . , Am} and Q = {rta (Ai , A j), rta (Ai , Ak), rtb (Ak, Al) . . . rtz (Ak, Am)}.
Here, ta, tb, tz ∈ τ are different relationship types between individuals (e.g., son, daughter,
father, aunt). Our goal is to recover F from a set of k participant reports, R.

We define these reports as R = {R1,R2, . . . ,Rk}, where superscripts will henceforth
denote the participant associated with the reported data. Each report, Ri = 〈pi ,Mi ,Qi 〉 is
defined by the reporting participant, pi , the set of family members mentioned in the report,
Mi , and the participant’s relationships to each mention, Qi . We denote the mentions, Mi =
{pi ,mi

1, . . . ,m
i
li
}, where each of the li mentions includes (possibly erroneous) personal

attributes and corresponds to a distinct, unknown actor in the family tree (note that the partic-
ipant is a mention as well). We denote the relationshipsQi = {rta (pi ,mi

x), . . . , rtb (p
i ,mi

y)},
where ta, tb ∈ τ denote the types of relation, and mi

x and mi
y denote the mentioned family

members with whom the participant pi shares the relation types ta and tb, respectively. A
participant pi can have an arbitrary number of relations of the same type (e.g., two daughters,
three brothers, zero sisters). Our goal is to examine all the mentions (participants and non-
participants) and perform amatching across reports to create sets of mentions that correspond
to the same actor. The ultimate task is to construct the unified family F from the collection
of matches.

Entity resolution task A prevalent approach to entity resolution is to cast the problem as a
binary, supervised classification task and use machine learning to label each pair of entities
as matching or non-matching. In our specific problem setting, this corresponds to introducing
a variable Same(x, y) for each pair of entities x, y occurring in distinct participant reports.
Formally, we define the variable Same(mi

x ,m
j
y) for each pair of mentions in distinct reports,

i.e., ∀i �= j∀mi
x∈Mi ∀m j

y∈M j . Our goal is to determine for each pair of mentions whether they

refer to the same actor.
In order to achieve this goal, we must learn a decision function that, given two mentions,

determines whether they are the same. Although the general problem of entity resolution
is well studied, we observe that a significant opportunity in this specific problem setting is
the ability to leverage the familial relationships in each report to perform relational entity
resolution. Unfortunately, the available reports, R are each provided from the perspective
of a unique participant. This poses a problem since we require relational information for
each mention in a report, not just for the reporting participant. As a concrete example, if one
participant report mentions a son and another report mentions a brother, comparing these
mentions from the perspectives of a parent and sibling, respectively, is complex. Instead, if
relational features of the mention could be reinterpreted from a common perspective, the
two mentions could be compared directly. We refer to the problem of recovering mention-
specific relational features from participant reports as relational normalization and present
our algorithm in the next section.

123

1552 P. Kouki et al.

Fig. 4 Left: the tree corresponding to a participant report provided by “Jose Perez.” Right: the derived nor-
malized tree from the perspective of “Ana Maria Perez”

3 Preprocessing via relational normalization

Since the relational information available in participant reports is unsuitable for entity res-
olution, we undertake the process of normalization to generate mention-specific relational
information. To do so,we translate the relational information in a reportRi into an ego-centric
tree,Ti

j , for eachmentionmi
j . Here, the notationT

i
j indicates that the tree is constructed from

the perspective of the j th mention of the i th report. We define Ti
j = 〈mi

j ,Q
i
j 〉, where Qi

j is
a set of relationships. Constructing these trees consists of two steps: relationship inversion
and relationship imputation.

Relationship inversionThefirst step in populating the ego-centric tree formi
j is to invert the

relationships inRi so that the first argument (subject) ismi
j . More formally, for each relation

type t j ∈ τ such that rt j (p
i ,mi

j), we introduce an inverse relationship rt ′i (m
i
j , p

i). In order

to do so, we introduce a function inverse(τ,mi
j , p

i) → τ which returns the appropriate
inverse relationship for each relation type. Note that the inverse of a relation depends both
on the mention and the participant, since in some cases mention attributes (e.g., father to
daughter) or participant attributes (e.g., daughter to father) are used to determine the inverse.

Relationship imputation The next step in populating Ti
j is to impute relationships for mi

j

mediated through pi . We define a function impute(rx (pi ,mi
j), ry(p

i ,mi
k)) → rk(mi

j ,m
i
k).

For example, given the relations {r f ather (pi ,mi
j), rmother (pi ,mi

k)} inTi (pi), thenwe impute

the relations rspouse(mi
j ,m

i
k) in Ti

j as well as rspouse(m
i
k,m

i
j) in Ti

k .
Figure 4 shows an example of the normalization process. We begin with the left tree

centered on “Jose Perez” and after applying inversion and imputation we produce the right
tree centered on “AnaMaria Perez.” Following the same process, we will produce three more
trees centered on “Sofia Perez,” “Manuel Perez,” and “Jose Perez” (with age 15). Finally, we
note that since initially we have relational information for just one person in each tree, it will
be impossible to use any relational information if we do not perform the normalization step.

4 Entity resolutionmodel for familial networks

After recovering the mention-specific relational features from participant reports, our next
step is to develop a model that is capable of collectively inferring mention equivalence using
the attributes, diverse relational evidence, and logical constraints. We cast this entity res-
olution task as inference in a graphical model, and use the probabilistic soft logic (PSL)
framework to define a probability distribution over co-referent mentions. Several features
of this problem setting necessitate the choice of PSL: (1) entity resolution in familial net-
works is inherently collective, requiring constraints such as transitivity and bijection; (2)
the multitude of relationship types require an expressive modeling language; (3) similarities

123

Collective entity resolution in multi-relational familial networks 1553

between mention attributes take continuous values; (4) potential matches scale polynomially
with mentions, requiring a scalable solution. PSL provides collective inference, expressive
relational models defined over continuously valued evidence, and formulates inference as
a scalable convex optimization. In this section, we provide a brief primer on PSL and then
introduce our PSL model for entity resolution in familial networks.

4.1 Probabilistic soft logic (PSL)

Probabilistic soft logic is a probabilistic programming language that uses a first-order logical
syntax to define a graphical model [2]. In contrast to other approaches, PSL uses continuous
random variables in the [0, 1] unit interval and specifies factors using convex functions,
allowing tractable and efficient inference. PSL defines a Markov random field associated
with a conditional probability density function over random variables Y conditioned on
evidence X,

P(Y|X) ∝ exp

⎛
⎝−

m∑
j=1

w jφ j (Y,X)

⎞
⎠ , (1)

where φ j is a convex potential function and w j is an associated weight which determines the
importance of φ j in the model. The potential φ j takes the form of a hinge-loss:

φ j (Y,X) = (max{0, � j (X,Y)})p j . (2)

Here, � j is a linear function of X and Y, and p j ∈ {1, 2} optionally squares the potential,
resulting in a squared-loss. The resulting probability distribution is log-concave in Y, so we
can solve maximum a posteriori (MAP) inference exactly via convex optimization to find
the optimal Y. We use the alternating direction method of multipliers (ADMM) approach
of Bach et al. [2] to perform this optimization efficiently and in parallel. The convex for-
mulation of PSL is the key to efficient, scalable inference in models with many complex
interdependencies.

PSL derives the objective function by translating logical rules specifying dependencies
between variables and evidence into hinge-loss functions. PSL achieves this translation by
using the Lukasiewicz norm and co-norm to provide a relaxation of Boolean logical connec-
tives [2]:

p ∧ q = max(0, p + q − 1)

p ∨ q = min(1, p + q)

¬p = 1 − p .

Recent work in PSL [2] provides a detailed description of PSL operators. To illustrate PSL
in an entity resolution context, the following rule encodes that mentions with similar names
and the same gender might be the same person:

SimName(m1,m2) ∧ eqGender(m1,m2) ⇒ Same(m1,m2) , (3)

where SimName(m1,m2) is a continuous observed atom taken from the string similarity
between the names of m1 and m2, eqGender(m1,m2) is a binary observed atom that takes its
value from the logical comparison m1.gender = m2.gender and Same(m1,m2) is a continuous
value to be inferred, which encodes the probability that the mentions m1 and m2 are the same
person. If this rule was instantiated with the assignments m1=John Smith, m2=J Smith

123

1554 P. Kouki et al.

the resulting hinge-loss potential function would have the form:

max(0,SimName(JohnSmith,JSmith)

+ eqGender(JohnSmith,JSmith)

− Same(JohnSmith,JSmith) − 1) .

4.2 PSLmodel

We define our model using rules similar to those in (3), allowing us to infer the Same relation
betweenmentions. Each rule encodes graph-structured dependency relationships drawn from
the familial network (e.g., if two mentions are co-referent, then their mothers should also be
co-referent) or conventional attribute-based similarities (e.g., if two mentions have similar
first and last name, then they are possibly co-referent). We present a set of representative
rules for our model, but note that additional features (e.g., locational similarity, conditions
from a medical history, or new relationships) can easily be incorporated into our model with
additional rules.

4.2.1 Scoping the rules

Familial datasets may consist of several mentions and reports. However, our goal is to match
mentions from the same family that occur in distinct reports. Obviously, mentions that belong
to different families could not be co-referent, sowe should only comparementions that belong
to the same family. In order to restrict rules to such mentions, it is necessary to perform
scoping on our logical rules. We define two predicates: belongsToFamily (abbreviated
BF(mx ,F)) and fromReport (abbreviated FR(mi ,Ri)). BF allows us to identify mentions
from a particular family’s reports, i.e., {mi

x ∈ Mi s.t. Ri ∈ F}, while FR filters individuals
from a particular participant report, i.e., {mi

x ∈ Mi }. In our matching, we wish to compare
mentions from the same family but appearing in different participant reports. To this end, we
introduce the following clause to our rules:

BF(m1,F) ∧ BF(m2,F) ∧ FR(m1,Ri) ∧ FR(m2,R j) ∧ Ri �= R j

In the rest of our discussion below, we assume that this scoping clause is included, but we
omit replicating it in favor of brevity.

4.2.2 Name similarity rules

One of themost important mention attributes is mention names.Much of the prior research on
entity resolution has focused on engineering similarity functions that can accurately capture
patterns in name similarity. Two such popular similarity functions are the Levenshtein [26]
and Jaro–Winkler [34]. The first is known to work well for common typographical errors,
while the second is specifically designed to work well with names. We leverage mention
names by introducing rules that capture the intuition that when two mentions have similar
names, then they are more likely to represent the same person. For example, when using the
Jaro–Winkler function to compute the name similarities, we use the following rule:

SimNameJW (m1,m2) ⇒ Same(m1,m2) .

This rule reinforces an important aspect of PSL: atoms take truth values in the [0, 1] interval,
capturing the degree of certainty of the inference. In the above rule, high name similarity

123

Collective entity resolution in multi-relational familial networks 1555

results in greater confidence that two mentions are the same. However, we also wish to
penalize pairs of mentions with dissimilar names from matching, for which we introduce the
rule using the logical not (¬):

¬SimNameJW (m1,m2) ⇒ ¬Same(m1,m2) .

The above rules use a generic SimName similarity function. In fact, our model introduces
several name similarities for first, last, and middle names as follows:

SimFirstNameJW (m1,m2) ⇒ Same(m1,m2)

SimMaidenNameJW (m1,m2) ⇒ Same(m1,m2)

SimLastNameJW (m1,m2) ⇒ Same(m1,m2)

¬SimFirstNameJW (m1,m2) ⇒ ¬Same(m1,m2)

¬SimMaidenNameJW (m1,m2) ⇒ ¬Same(m1,m2)

¬SimLastNameJW (m1,m2) ⇒ ¬Same(m1,m2) .

In the above rules, we use the Jaro–Winkler similarity function. In our basic model, we
additionally introduce the same rules that compute similarities using the Levenshtein distance
as well. Finally, we experiment with adding other popular similarity functions, i.e., Monge
Elkan, Soundex, Jaro [34], and their combinations and discuss how different string similarity
metrics affect performance in the experimental section.

4.2.3 Personal information similarity rules

In addition to the name attributes of a mention, there are often additional attributes provided
in reports that are useful for matching. For example, age is an important feature for entity
resolution in family trees since it can help us discern between individuals having the same
(or very similar) name but belonging to different generations. We introduce the following
rules for age:

SimAge(m1,m2) ⇒ Same(m1,m2)

¬SimAge(m1,m2) ⇒ ¬Same(m1,m2) .
(4)

The predicate SimAge(m1,m2) takes values in the interval [0, 1] and is computed as the
ratio of the smallest over the largest value, i.e.:

SimAge(m1,m2) = min{m1.age,m2.age}
max{m1.age,m2.age} .

The above rules will work well when the age is known. However, in the familial networks
setting that we are operating on it is often the case where personal information and usually
the age is not known. For these cases, we can specifically ask from our model to take into
account only cases where the personal information is known and ignore it when this is not
available. To this end, we replace the rules in (4) with the following:

KnownAge(m1) ∧ KnownAge(m2) ∧ SimAge(m1,m2) ⇒ Same(m1,m2)

KnownAge(m1) ∧ KnownAge(m2) ∧ ¬SimAge(m1,m2) ⇒ ¬Same(m1,m2)

In other words, using the scoping predicates KnownAge(m1) and
KnownAge(m2) we can handle missing values in the PSL model, which is an important
characteristic.

123

1556 P. Kouki et al.

While attributes like age have influence in matching, other attributes cannot be reliably
considered as evidence to matching, but they are far more important in disallowing matches
between the mentions. For example, simply having the same gender is not a good indicator
that twomentions are co-referent. However, having a different gender is a strong evidence that
two mentions are not co-referent. To this end, we also introduce rules that prevent mentions
from matching when certain attributes differ:

¬eqGender(m1,m2) ⇒ ¬Same(m1,m2)

¬eqLiving(m1,m2) ⇒ ¬Same(m1,m2) .

We note that the predicates eqGender(m1,m2) and eqLiving(m1,m2) are binary-valued
atoms.

4.2.4 Relational similarity rules

Although attribute similarities provide useful features for entity resolution, in problem set-
tings such as familial networks, relational features are necessary for matching. Relational
features can be introduced in a multitude of ways. One possibility is to incorporate purely
structural features, such as the number and types of relationships for each mention. For
example, given a mention with two sisters and three sons and a mention with three sisters
and three sons, we could design a similarity function for these relations. However, practically
this approach lacks discriminative power because there are often mentions that have simi-
lar relational structures (e.g., having a mother) that refer to different entities. To overcome
the lack of discriminative power, we augment structural similarity with a matching process.
For relationship types that are surjective, such as mother or father, the matching process is
straightforward. We introduce a rule:

SimMother(m1,m2) ⇒ Same(m1,m2) ,

SimMother may have many possible definitions, ranging from an exact string match to a
recursive similarity computation. In this subsection, we define SimMother as equal to the
maximum of the Levenshtein and Jaro–Winkler similarities of the first names, and discuss
a more sophisticated treatment in the next subsection. However, when a relationship type is
multi-valued, such as sister or son, a more sophisticated matching of the target individuals
is required. Given a relation type t and possibly co-referent mentions mi

1,m
j
2, we find all

entities Mx = {mi
x : rt (mi

1,m
i
x) ∈ Qi

1} and My = {m j
y : rt (m j

2,m
j
y) ∈ Q j

2}. Now we must
define a similarity for the sets Mx and My , which in turn will provide a similarity for mi

1 and

m j
2. The similarity function we use is:

Simt (m1,m2) = 1

|Mx |
∑

mx∈Mx

max
my∈My

SimName(mx ,my) .

For eachmx (an individualwith relation t tom1), this computation greedily chooses the bestmy

(an individualwith relation t tom2). In our computation,we assume (without loss of generality,
assuming symmetry of the similarity function) that |Mx | < |My |. While many possible
similarity functions can be used for SimName, we take the maximum of the Levenshtein and
Jaro–Winkler similarities of the first names in our model.

Our main goal in introducing these relational similarities is to incorporate relational evi-
dence that is compatible with simpler, baselinemodels.Whilemore sophisticated than simple
structuralmatches, these relational similarities aremuch less powerful than the transitive rela-
tional similarities supported by PSL, which we introduce in the next section.

123

Collective entity resolution in multi-relational familial networks 1557

4.2.5 Transitive relational (similarity) rules

The rules that we have investigated so far can capture personal and relational similarities, but
they cannot identify similar persons in a collective way. To make this point clear, consider
the following observation: when we have high confidence that two persons are the same, we
also have a stronger evidence that their associated relatives, e.g., father, are also the same.
We encode this intuition with rules of the following type:

Rel(Father,m1,ma) ∧ Rel(Father,m2,mb) ∧ Same(m1,m2) ⇒ Same(ma,mb) .

The rule above works well with surjective relationships, since each person can have only
one (biological) father. When the cardinality is larger, e.g., sister, our model must avoid
inferring that all sisters of two respective mentions are the same. In these cases, we use
additional evidence, i.e., name similarity, to select the appropriate sisters tomatch, as follows:

Rel(Sister,m1,ma) ∧ Rel(Sister,m2,mb) ∧ Same(m1,m2) ∧ SimName(ma,mb)

⇒ Same(ma,mb) .

Just as in the previous section, we compute SimName by using the maximum of the Jaro–
Winkler and Levenshtein similarities for first names. For relationships that are one to one,
we can also introduce negative rules which express the intuition that two different persons
should be connected to different persons given a specific relationship. For example, for a
relationship such as spouse, we can use a rule such as:

Rel(Spouse,m1,ma) ∧ Rel(Spouse,m2,mb) ∧ ¬Same(m1,m2) ⇒ ¬Same(ma,mb).

However, introducing similar rules for one-to-many relationships is inadvisable. To under-
stand why, consider the case where two siblings do not match, yet they have the samemother,
whose match confidence should remain unaffected.

4.2.6 Bijection and transitivity rules

Our entity resolution task has several natural constraints across reports. The first is bijection,
namely that amentionmi

x canmatch at most onemention,m j
y from another report. According

to the bijection rule, if mentionma from report R1 is matched to mentionmb from report R2,
then m1 cannot be matched to any other mention from report R2:

FR(ma,R1) ∧ FR(mb,R2) ∧ FR(mc,R2) ∧ Same(ma,mb) ⇒ ¬Same(ma,mc) .

Note that this bijection is soft and does not guarantee a single, exclusive match for ma , but
rather attenuates the confidence in each possible match modulated by the evidence for the
respective matches. A second natural constraint is transitivity, which requires that if mi

a and

m j
y are the same, and mentions m j

y and mk
c are the same, then mentions mi

a and mk
c should

also be the same. We capture this constraint as follows:

FR(ma,R1) ∧ FR(mb,R2) ∧ FR(mc,R3) ∧ Same(ma,mb) ∧ Same(mb,mc) ⇒
Same(ma,mc) .

123

1558 P. Kouki et al.

4.2.7 Prior rule

Entity resolution is typically an imbalanced classification problem, meaning that most of the
mention pairs are not co-referent. We can model our general belief that two mentions are
likely not co-referent, using the prior rule:

¬Same(m1,m2) .

4.2.8 Rules to leverage existing classification algorithms

Every state-of-the-art classification algorithm has strengths and weaknesses which may
depend on data-specific factors such as the degree of noise in the dataset. In this work,
our goal is to provide a flexible framework that can be used to generate accurate entity reso-
lution decisions for any data setting. To this end, we can also incorporate the predictions from
different methods into our unified model. Using PSL as a meta-model has been successfully
applied in recent work [29]. In our specific scenario of entity resolution, for example, the
predictions from three popular classifiers (logistic regression (LR), support vector machines
(SVMs), and logistic model trees (LMTs)) can be incorporated in the model via the following
rules:

SameLR(m1,m2) ⇒ Same(m1,m2)

¬SameLR(m1,m2) ⇒ ¬Same(m1,m2)

SameSVMs(m1,m2) ⇒ Same(m1,m2)

¬SameSVMs(m1,m2) ⇒ ¬Same(m1,m2)

SameLMTs(m1,m2) ⇒ Same(m1,m2)

¬SameLMTs(m1,m2) ⇒ ¬Same(m1,m2) .

Note that for each classifier we introduce two rules: 1) the direct rule which states that if a
given classifier predicts that the mentions are co-referent, then it is likely that they are indeed
co-referent and 2) the reverse rule which states that if the classifier predicts that the mentions
are not co-referent, then it is likely that they are not co-referent. Additionally, using PSL we
can introducemore complex rules that combine the predictions from the other algorithms. For
example, if all three classifiers agree that a pair of mentions is co-referent, then this is strong
evidence that this pair of mentions is indeed co-referent. Similarly, if all three classifiers
agree that the pair of mentions is not co-referent, then this is strong evidence that they are
not co-referent. We can model these ideas through the following rules:

SameLR(m1,m2) ∧ SameSVMs(m1,m2) ∧ SameLMTs(m1,m2) ⇒
Same(m1,m2)

¬SameLR(m1,m2) ∧ ¬SameSVMs(m1,m2) ∧ ¬SameLMTs(m1,m2) ⇒
¬Same(m1,m2) .

4.2.9 Flexible modeling

We reiterate that in this section we have only provided representative rules used in our
PSL model for entity resolution. A full compendium of all rules used in our experiments
is presented in the appendix. Moreover, a key feature of our model is the flexibility and
the ease with which it can be extended to incorporate new features. For example, adding

123

Collective entity resolution in multi-relational familial networks 1559

additional attributes, such as profession or location, is easy to accomplish following the
patterns of Sect. 4.2.3. Incorporating additional relationships, such as cousins or friends, is
simply accomplished using the patterns in Sects. 4.2.4 and 4.2.5. Our goal has been to present
a variety of patterns that are adaptable across different datasets and use cases.

4.3 Learning the PSLmodel

Given the abovemodel,we use observational evidence (similarity functions and relationships)
and variables (potentialmatches) to define a set of ground rules. Each ground rule is translated
into a hinge-loss potential function of the form (2) defining a Markov random field, as in
(1) (Sect. 4.1). Then, given the observed values X, our goal is to find the most probable
assignment to the unobserved variables Y by performing joint inference over interdependent
variables.

As we discussed in 4.1, each of the first-order rules introduced in the previous section
is associated with a nonnegative weight w j in Eq. 1. These weights determine the relative
importance of each rule, corresponding to the extent to which the corresponding hinge func-
tion φ j alters the probability of the data under Eq. 1. A higher weight w j corresponds to
a greater importance of information source j in the entity resolution task. We learn rule
weights using Bach et al.’s [2] approximate maximum likelihood weight learning algorithm,
using a held-out training set. The algorithm approximates a gradient step in the conditional
likelihood,

∂logP(Y|X)

∂w j
= Ew[φ j (Y,X)] − φ j (Y,X) , (5)

by replacing the intractable expectation with the MAP solution based on w, which can be
rapidly solved using ADMM. Finally, since the output of the PSL model is a soft truth value
for each pair of mentions, to evaluate our matching we choose a threshold to make a binary
match decision. We choose the optimal threshold on a held-out development set to maximize
the F-measure score and use this threshold when classifying data in the test set.

4.4 Satisfyingmatching restrictions

One of the key constraints in ourmodel is a bijection constraint that requires that eachmention
can match at most one mention in another report. Since the bijection rule in PSL is soft, in
some cases, we may get multiple matching mentions for a report. To enforce this restriction,
we introduce a greedy 1:1 matching step. We use a simple algorithm that first sorts output
matchings by the truth value of the Same(mi

x ,m
j
y) predicate. Next, we iterate over this sorted

list ofmention pairs, choosing the highest ranked pair for an entity, (mi
x ,m

j
y).We then remove

all other potential pairs, ∀mi
a ,a �=x (m

i
a,m

j
y) and ∀

m j
b ,b �=y

(mi
x ,m

j
b), from thematching. The full

description can be found in Algorithm 1. This approach is simple to implement, efficient,
and can potentially improve model performance, as we will discuss in our experiments.

123

1560 P. Kouki et al.

input : A set of mention pairs classified as MATCH together with the likelihood of the MATCH
output: A set of mention pairs satisfying the one-to-one matching restrictions

1 repeat
2 pick unmarked pair {ai , a j } with highest MATCH likelihood;
3 output pair {ai , a j } as MATCH;
4 mark pair {ai , a j };
5 output all other pairs containing either ai or a j as NO MATCH;
6 mark all other pairs containing either ai or a j ;
7 until all pairs are marked;

Algorithm 1: Satisfying matching restrictions.

5 Experimental validation

5.1 Datasets and baselines

For our experimental evaluation, we use two datasets: a clinical dataset provided by the
National Institutes of Health (NIH) [15] and a public dataset crawled from the structured
knowledge repository,Wikidata.1 We provide summary statistics for both datasets in Table 1.

The NIH dataset was collected by interviewing 497 patients from 162 families and record-
ing family medical histories. For each family, 3 or 4 patients were interviewed, and each
interview yielded a corresponding ego-centric view of the family tree. Patients provided
first- and second-degree relations, such as parents and grandparents. In total, the classifi-
cation task requires determining co-reference for about 300, 000 pairs of mentions. The
provided dataset was manually annotated by at least two coders, with differences reconciled
by blind consensus. Only 1.6% of the potential pairs are co-referent, resulting in a severely
imbalanced classification, which is common in entity resolution scenarios.

The Wikidata dataset was generated by crawling part of the Wikidata2 knowledge base.
More specifically, we generated a seed set of 419 well-known politicians or celebrities, e.g.,
“Barack Obama.”3 For each person in the seed set, we retrieved attributes from Wikidata
including their full name (and common variants), age, gender, and living status. Wikidata
provides familial data only for first-degree relationships, i.e., siblings, parents, children, and
spouses. Using the available relationships, we also crawledWikidata to acquire attributes and
relationships for each listed relative. This process resulted in 419 families. For each family,
we have a different number of family trees (ranging from 2 to 18) with 1844 family trees in
total, and 175,000 pairs of potentially co-referent mentions (8.7% of which are co-referent).
Mentions in Wikidata are associated with unique identifiers, which we use as ground truth.
In the next section, we describe how we add noise to this dataset to evaluate our method.

We compare our approach to state-of-the-art classifiers that are capable of providing
the probability that a given pair of mentions is co-referent. Probability values are essential
since they are the input to the greedy 1–1 matching restrictions algorithm. We compare our
approach to the following classifiers: logistic regression (LR), logistic model trees (LMTs),
and support vector machines (SVMs). For LR, we use a multinomial logistic regression
model with a ridge estimator [6] using the implementation and improvements of Weka [14]
with the default settings. For LMTs, we use Weka’s implementation [23] with the default

1 Code and data available at: https://github.com/pkouki/icdm2017.
2 https://www.wikidata.org/.
3 https://www.wikidata.org/wiki/Q76.

123

https://github.com/pkouki/icdm2017
https://www.wikidata.org/
https://www.wikidata.org/wiki/Q76

Collective entity resolution in multi-relational familial networks 1561

Table 1 Datasets description Dataset NIH Wikidata

No. of families 162 419

No. of family trees 497 1844

No. of mentions 12,111 8553

No. of 1st degree relationships 46,983 49,620

No. of 2nd degree relationships 67,540 0

No. of pairs for comparison 300,547 174,601

% of co-referent pairs 1.6 8.69

settings. For SVMs, we use Weka’s LibSVM library [7], along with the functionality to
estimate probabilities. To select the best SVM model, we follow the process described by
Hsu et al. [19]: we first find the kernel that performs best, which in our case was the radial
basis function (RBF). We then perform a grid search to find the best values for C and γ

parameters. The starting point for the grid search was the default values given by Weka,
i.e., C = 1 and γ = 1/(number of attributes), and we continue the search with exponentially
increasing/decreasing sequences of C and γ . However, unlike our model, none of these
off-the-shelf classifiers can incorporate transitivity or bijection.

Finally, we note that we also experimented with off-the-shelf collective classifiers pro-
vided by Weka.4 More specifically, we experimented with Chopper, TwoStageCollective,
and YATSI [11]. Among those, YATSI performed the best. YATSI (Yet Another Two-Stage
Classifier) is collective in the sense that the predicted label of a test instance will be influ-
enced by the labels of related test instances.We experimented with different configurations of
YATSI, such as varying the classificationmethod used, varying the nearest neighbor approach,
varying the number of the neighbors to consider, and varying the weighting factor. In our
experiments, YATSI was not able to outperform the strongest baseline (which as we will
show is LMTs), so, for clarity, we omit these results from our discussion below.

5.2 Experimental setup

We evaluate our entity resolution approach using the metrics of precision, recall, and
F-measure for the positive (co-referent) class which are typical for entity resolution prob-
lems [8]. For all reported results, we use fivefold cross-validation, with distinct training,
development, and test sets. Folds are generated by randomly assigning each of the 162 (NIH)
and 419 (Wikidata) families to one of five partitions, yielding folds that contain the participant
reports for approximately 32 (NIH) and 83 (Wikidata) familial networks.

The NIH dataset is collected in a real-world setting where information is naturally incom-
plete and erroneous, and attributes alone are insufficient to resolve the entities. However,
the Wikidata resource is heavily curated and assumed to contain no noise. To simulate the
noisy conditions of real-world datasets, we introduced additive Gaussian noise to the sim-
ilarity scores. Noise was added to each similarity metric described in the previous section
(e.g., first name Jaro–Winkler, age ratio). For the basic experiments presented in the next
Sect. 5.3, results are reported for noise terms drawn from a N (0, 0.16) distribution. In our
full experiments (presented in Sect. 5.5), we consider varying levels of noise, finding higher
noise correlated with lower performance.

4 Available at: https://github.com/fracpete/collective-classification-weka-package.

123

https://github.com/fracpete/collective-classification-weka-package

1562 P. Kouki et al.

In Sect. 4.2.2, we discussed that PSL can incorporate multiple similarities computed by
different string similarity functions. For the basic experiments presented in the next Sect. 5.3,
results are reported using the Levenshtein and Jaro–Winkler string similarity functions for
PSL and the baselines. In our full experiments (presented in Sect. 5.5), we consider adding
other string similarity functions.

In each experiment, for PSL, we use threefolds for training the model weights, onefold for
choosing a binary classification threshold, and onefold for evaluating model performance. To
train the weights, we use PSL’s default values for the two parameters: number of iterations
(equal to 25) and step size (equal to 1). For SVMs, we use threefolds for training the SVMs
with the different values of C and γ , onefold for choosing the best C and γ combination, and
onefold for evaluating model performance. For LR and LMTs, we use threefolds for training
the models with the default parameter settings and onefold for evaluating the models. We
train, validate, and evaluate using the same splits for all models. We report the average
precision, recall, and F-measure together with the standard deviation across folds.

5.3 Performance of PSL and baselines

For our PSL model, we start with a simple feature set using only name similarities (see
Sect. 4.2.2), transitivity and bijection soft constraints (see Sect. 4.2.6), and a prior (see
Sect. 4.2.7). We progressively enhance the model by adding attribute similarities computed
based on personal information, relational similarities, and transitive relationships. For each
experiment,we additionally report resultswhen includingpredictions from the other baselines
(described in Sect. 4.2.8). Finally, since our dataset poses the constraint that each person from
one report can be matched with at most one person from another report, we consider only
solutions that satisfy this constraint. To ensure that the output is a valid solution, we apply
the greedy 1:1 matching restriction algorithm (see Sect. 4.4) on the output of the each model.

For each of the experiments, we also ran baseline models that use the same information
as the PSL models in the form of features. Unlike our models implemented within PSL,
the models from the baseline classifiers do not support collective reasoning, i.e., applying
transitivity and bijection is not possible in the baseline models. However, we are able to apply
the greedy 1:1 matching restriction algorithm on the output of each of the classifiers for each
of the experiments to ensure that we provide a valid solution. More specifically, we ran the
following experiments:

Names We ran two PSL models that use as features the first, middle, and last name
similarities based on Levenshtein and Jaro–Winkler functions to compute string similarities.
In the first model, PSL(N), we use rules only on name similarities, as discussed in Sect. 4.2.2.
In the second model, PSL(N + pred) we enhance PSL(N) by adding rules that incorporate
the predictions from the other baseline models as described in Sect. 4.2.8. We also ran LR,
LMTs, and SVMs models that use as features the first, middle, and last name similarities
based on Levenshtein and Jaro–Winkler measures.

Names + Personal Info We enhance Names by adding rules about personal information
similarities, as discussed in Sect. 4.2.3. Again, for PSL we ran two models: PSL(P) which
does not include predictions from the baselines and PSL(P+ pred) that does include predic-
tions from the baselines. For the baselines, we add corresponding features for age similarity,
gender, and living status. This is the most complex feature set that can be supported without
using the normalization procedure we introduced in Sect. 3.

Names+Personal+Relational Info (1st degree)For thismodel and all subsequentmodels,
we perform normalization to enable the use of relational evidence for entity resolution. We

123

Collective entity resolution in multi-relational familial networks 1563

present the performance of four PSLmodels. In the firstmodel, PSL(R1), we enhance PSL(P)
by adding first-degree relational similarity rules, as discussed in Sect. 4.2.4. First-degree
relationships are: mother, father, daughter, son, brother, sister, spouse. In the second model,
PSL(R1 + pred) we extend PSL(R1) by adding the predictions from the baselines. In the
third model, PSL(R1T R1), we extend the PSL(R1) by adding first-degree transitive relational
rules, as discussed in Sect. 4.2.5. In the fourth model, PSL(R1T R1 + pred), we extend the
PSL(R1T R1) by adding the predictions from the baselines. For the baselines, we extend the
previous models by adding first-degree relational similarities as features. However, it is not
possible to include features similar to the transitive relational rules in PSL, since thesemodels
do not support collective reasoning or inference across instances.

Names + Personal + Relational Info (1st + 2nd degree) As above, we evaluate the per-
formance of four PSL models. In the first experiment,

PSL(R12T R1), we enhance the model PSL(R1T R1) by adding second-degree relational
similarity rules, as discussed in Sect. 4.2.4. Second-degree relationships are: grandmother,
grandfather, granddaughter, grandson, aunt, uncle, niece, nephew. In the second experi-
ment, PSL(R12T R1 + pred), we enhance PSL(R12T R1) by adding the predictions from
the baselines. In the third experiment, PSL(R12T R12), we enhance PSL(R12T R1) by adding
second-degree transitive relational similarity rules, as discussed in Sect. 4.2.5. In the fourth
experiment, PSL(R12T R12 + pred), we enhance PSL(R12T R12) by adding the predictions
from the baselines. For the baselines, we add the second-degree relational similarities as fea-
tures. Again, it is not possible to add features that capture the transitive relational similarity
rules to the baselines. Since Wikidata dataset does not provide second-degree relations, we
do not report experimental results for this case.

5.3.1 Discussion

We present our results in Tables 2 (NIH) and 3 (Wikidata). For each experiment, we denote
with bold the best performance in terms of the F-measure. We present the results for both
our method and the baselines and only for the positive class (co-referent entities). Due to
the imbalanced nature of the task, performance on non-matching entities is similar across all
approaches, with precision varying from 99.6 to 99.9%, recall varying from 99.4 to 99.9%,
and F-measure varying from 99.5 to 99.7% for the NIH dataset. For the Wikidata, precision
varies from 98.7 to 99.8%, recall varies from 98.9 to 99.9%, and F-measure varies from 99.5
to 99.7%. Furthermore, to highlight the most interesting comparisons we introduce Figs. 5, 6,
and 7 as a complement for the complete tables. The plots in these figures show the F-measure
when varying the classificationmethod (i.e., baselines and PSL) or the amount of information
used for the classification (e.g., use only names). Figures in blue are for NIH, while figures
in orange are for the Wikidata dataset. Next, we summarize some of our insights from the
results of Tables 2 and 3. For the most interesting comparisons, we additionally refer to
Figs. 5, 6, and 7.

PSL models universally outperform baselines In each experiment, PSL outperforms all the
baselines using the same feature set. PSL produces a statistically significant improvement in
F-measure asmeasured by a paired t test withα = 0.05.Of the baselines, LMTs perform best
in all experiments and will be used for illustrative comparison. When using name similarities
only (Names models in Tables 2 and 3) PSL(N) outperforms LMTs by 2.3% and 3.6%
(absolute value) for the NIH and the Wikidata dataset accordingly. When adding personal
information similarities (Names + Personal Info), PSL(P) outperforms LMTs by 1.4% and
2% for the NIH and the Wikidata accordingly. For the experiment Names + Personal +

123

1564 P. Kouki et al.

Table 2 Performance of PSL and baseline classifiers with varying types of rules/features for the NIH dataset

NIH
Experiment Method Precision (SD) Recall (SD) F-measure (SD)

Names LR 0.871 (0.025) 0.686 (0.028) 0.767 (0.022)

SVMs 0.870 (0.022) 0.683 (0.027) 0.765 (0.020)

LMTs 0.874 (0.020) 0.717 (0.027) 0.787 (0.022)

PSL(N) 0.866 (0.021) 0.761 (0.028) 0.810 (0.023)*

PSL(N + pred) 0.873 (0.021) 0.764 (0.022) 0.815 (0.019)

Names + Personal
Info

LR 0.968 (0.010) 0.802 (0.035) 0.877 (0.024)

SVMs 0.973 (0.008) 0.832 (0.025) 0.897 (0.017)

LMTs 0.961 (0.012) 0.857 (0.020) 0.906 (0.016)

PSL(P) 0.942 (0.014) 0.900 (0.022) 0.920 (0.015)*

PSL(P + pred) 0.949 (0.008) 0.895 (0.018) 0.921 (0.013)*

Names + personal
+ relational info
(1st degree)

LR 0.970 (0.012) 0.802 (0.034) 0.878 (0.024)

SVMs 0.983 (0.008) 0.835 (0.026) 0.903 (0.018)

LMTs 0.961 (0.010) 0.859 (0.020) 0.907 (0.014)

PSL(R1) 0.943 (0.012) 0.881 (0.030) 0.910 (0.015)

PSL(R1 + pred) 0.958 (0.009) 0.885 (0.017) 0.920 (0.013)*

PSL(R1T R1) 0.964 (0.007) 0.937 (0.015) 0.951 (0.009)*

PSL(R1T R1 + pred) 0.966 (0.009) 0.939 (0.011) 0.952 (0.010)*

Names + personal
+ relational info
(1st + 2nd
degree)

LR 0.970 (0.012) 0.807 (0.051) 0.880 (0.032)

SVMs 0.985 (0.006) 0.856 (0.029) 0.916 (0.019)

LMTs 0.975 (0.008) 0.872 (0.016) 0.921 (0.011)

PSL(R12T R1) 0.964 (0.008) 0.935 (0.017) 0.949 (0.010)*

PSL(R12T R1 + pred) 0.970 (0.008) 0.943 (0.011) 0.957 (0.009)*

PSL(R12T R12) 0.965 (0.008) 0.937 (0.015) 0.951 (0.009)*

PSL(R12T R12 + pred) 0.969 (0.009) 0.943 (0.011) 0.956 (0.008)*

Numbers in parenthesis indicate standard deviations. Bold shows the best performance in terms of F-measure
for each feature set.We denote by * statistical significance among the PSLmodel and the baselines at α = 0.05
when using paired t test

Relational Info 1st degree, the PSL model that uses both relational and transitive relational
similarity rules, PSL(R1T R1), outperforms LMTs by 4.4% for the NIH and 3.1% for the
Wikidata. Finally, for the NIH dataset, for the experiment that additionally uses relational
similarities of second degree, the best PSLmodel, PSL(R12T R12), outperformsLMTs by 3%.
When incorporating the predictions from the baseline algorithms (LR, SVMs, and LMTs)
we observe that the performance of the PSLmodels further increases. We graphically present
the superiority (in terms of F-measure) of the PSL models when compared to the baselines
in all different sets of experiments in Figs. 5 and 6 for the NIH and the Wikidata datasets
accordingly.

123

Collective entity resolution in multi-relational familial networks 1565

Table 3 Performance of PSL and baseline classifiers with varying types of rules/features for the Wikidata
dataset

Wikidata
Experiment Method Precision (SD) Recall (SD) F-measure (SD)

Names LR 0.905 (0.015) 0.6598 (0.022) 0.720 (0.018)

SVMs 0.941 (0.017) 0.607 (0.034) 0.738 (0.026)

LMTs 0.926 (0.011) 0.660 (0.034) 0.770 (0.023)

PSL(N) 0.868 (0.014) 0.754 (0.031) 0.806 (0.016)*

PSL(N + pred) 0.876 (0.017) 0.757 (0.031) 0.811 (0.016)*

Names + personal
info

LR 0.953 (0.015) 0.713 (0.032) 0.815 (0.022)

SVMs 0.970 (0.011) 0.723 (0.034) 0.828 (0.023)

LMTs 0.960 (0.014) 0.745 (0.037) 0.838 (0.022)

PSL(P) 0.908 (0.026) 0.816 (0.042) 0.858 (0.016)*

PSL(P + pred) 0.928 (0.026) 0.839 (0.040) 0.880 (0.017)*

Names + personal
+ relational info
(1st degree)

LR 0.962 (0.013) 0.756 (0.028) 0.846 (0.015)

SVMs 0.975 (0.012) 0.776 (0.035) 0.864 (0.019)

LMTs 0.967 (0.015) 0.785 (0.037) 0.866 (0.019)

PSL(R1) 0.914 (0.017) 0.866 (0.031) 0.889 (0.011)*

PSL(R1 + pred) 0.934 (0.018) 0.900 (0.023) 0.916 (0.011)*

PSL(R1T R1) 0.917 (0.018) 0.878 (0.016) 0.897 (0.007)*

PSL(R1T R1 + pred) 0.927 (0.018) 0.907 (0.019) 0.917 (0.011)*

Numbers in parenthesis indicate standard deviations. Bold shows the best performance in terms of F-measure
for each feature set.We denote by * statistical significance among the PSLmodel and the baselines at α = 0.05
when using paired t test

Name similarities are not enough When we incorporate personal information similarities
(Names + Personal Info) on top of the simple Names model that uses name similarities
only, we get substantial improvements for the PSL model: 11% for the NIH and 5.2% for the
Wikidata (absolute values) in F-measure. The improvement is evident in the graphs presented
in Fig. 7 when comparing columns N and P for both datasets. The same observation is also
true for all baseline models. For the NIH dataset, the SVMs get the most benefit out of the
addition of personal information with an increase of 13.2%. For the Wikidata dataset, LR
gets the most benefit with an increase of 9.5% for the F-measure.

First-degree relationships help most in low noise scenariosWe found that reliable relational
evidence improves performance, but noisy relationships can be detrimental. In the NIH
dataset, incorporating first-degree relationships using the simple relational similarity function
defined in Sect. 4.2.4 decreases performance slightly (1%) for the PSLmodel (also evident in
Fig. 7a when comparing columns P and R1). For LR, SVMs and LMTs, F-measure increases
slightly (0.1%, 0.6%, and 0.1%, respectively). However, for the Wikidata, the addition of
simple relational similarities increased F-measure by 3.1% for PSL(R1). (This is shown in
Fig. 7b when comparing columns P and R1.) The same applies for the baseline models where
we observe improvements of 2.8% for LMTs, 3.6% for SVMs, and 3.1% for LR. We believe
that the difference in the effect of the simple relational features is due to the different noise
in the two datasets. NIH is a real-world dataset with incomplete and unreliable information,

123

1566 P. Kouki et al.

0.70

0.75

0.80

0.85

0.90

0.95

F−
M
ea

su
re

0.70

0.75

0.80

0.85

0.90

0.95

LR SVMs LMTs PSL LR SVMs LMTs PSL

F−
M
ea

su
re

0.70

0.75

0.80

0.85

0.90

0.95

LR SVMs LMTs PSL

F−
M
ea

su
re

0.70

0.75

0.80

0.85

0.90

0.95

LR SVMs LMTs PSL

F−
M
ea

su
re

(a) (b)

(c) (d)

Fig. 5 NIH dataset: graphical representation of the performance (F-measure) of the baselines and the PSL
models in different experimental setups. Standard deviations are shown around the top of each bar. For the
PSL, we report the results for the models PSL(N + pred), PSL(P + pred), PSL(R1T R1 + pred), and
PSL(R12T R12 + pred), respectively. a Names, b Names + Personal Info, c Names + Personal + Relational
Info (1st degree) and d Names + Personal + Relational Info (1st + 2nd degree)

0.70

0.75

0.80

0.85

0.90

F−
M
ea

su
re

0.70

0.75

0.80

0.85

0.90

F−
M
ea

su
re

0.70

0.75

0.80

0.85

0.90

LR SVMs LMTs PSL LR SVMs LMTs PSL LR SVMs LMTs PSL

F−
M
ea

su
re

(a) (b) (c)

Fig. 6 Wikidata dataset: graphical representation of the performance (F-measure) of the baselines and the
PSL models in different experimental setups. Standard deviations are shown around the top of each bar. For
the PSL, we report the results for the models PSL(N + pred), PSL(P + pred), and PSL(R1T R1 + pred),
respectively. a Names, b Names + Personal Info and c Names + Personal + Relational Info (1st degree)

whileWikidata is considered to contain no noise. As a result, we believe that both the baseline
and PSL models are able to cope with the artificially introduced noise, while it is much more
difficult to deal with real-world noisy data.

Collective relations yield substantial improvements When we incorporate collective, tran-
sitive relational rules to the PSL(R1) model resulting to the PSL(R1T R1) model—a key
differentiator of our approach—we observe a 4.1% improvement in F-measure for the NIH

123

Collective entity resolution in multi-relational familial networks 1567

0.75

0.80

0.85

0.90

0.95

1 R1TR1 R12TR1 R12TR12

F−
M
ea

su
re

0.75

0.80

0.85

0.90

0.95

N P R N P R1 R1TR1

F−
M
ea

su
re

(a) (b)

Fig. 7 Graphical representation of the performance of PSL in terms of F-measure with varying types of rules
for (a) the NIH and (b) the Wikidata datasets. Standard deviations are shown around the top of each bar. All
reported results are from PSL models that use the predictions from other algorithms. a NIH and b Wikidata

dataset. This is also evident in Fig. 7a when comparing columns R1 and R1T R1. We note that
this is a result of an increase of 5.1% for the recall and 2.1% for the precision. Adding col-
lective rules allows decisions to be propagated between related pairs of mentions, exploiting
statistical signals across the familial network to improve recall. The Wikidata also benefits
from collective relationships, but the 0.8% improvement in F-measure score is much smaller.
(For graphical illustration, there is no obvious improvement when comparing columns R1

and R1T R1 of Fig. 7b.) For this cleaner dataset, we believe that simple relational similarity
rules were informative enough to dampen the impact of transitive relational similarity rules.
As a result, these rules are not as helpful as in the more noisy NIH dataset.

Second-degree similarities improve performance for the baselines The addition of simple
relational similarities from second-degree relationships, such as those available in the NIH
dataset, yield improvements in all baseline models. When adding second-degree relation-
ships, we observe a pronounced increase in the F-measure for two baselines (1.6% for
LMTs and 1.3% for SVMs), while LR has a small increase of 0.2%. For our approach,
PSL(R12T R1), slightly decreases the PSL(R1T R1) model (0.2% for F-measure), while the
addition of second-degree transitive relational features (model PSL(R12T R12)) improves
slightly the performance by 0.2%.

Predictions from other algorithms always improve performance In all our experiments, we
ran different versions of the PSL models that included or omitted the predictions from the
baselines, i.e., LR, SVMs, LMTs (discussed in Sect. 4.2.8). We observe that the addition
of the predictions of the other algorithms always increases the performance of the PSL
models. More specifically, for the NIH dataset, the addition of the predictions from LR,
SVMs, and LMTs slightly increases the F-measure of the PSL models. In particular, F-
measure increases by 0.5% for the experiment Names and 0.1% for the experiment Names
+ Personal Info. Also, the experiment PSL(R1 + pred) improves the F-measure of the
experiment PSL(R1) by 1.0%, and the experiment PSL(R1T R1 + pred) slightly improves
the F-measure of the experiment PSL(R1T R1) by 0.1%. For the case of the experiment
PSL(R1 + pred), we can see that its performance (F-measure = 0.910) is very close to the
performance of the baselines (e.g., the F-measure for the LMTs is 0.907). As a result, adding
the baselines helps the PSL model to better distinguish the true positives and true negatives.
However, in the case of the model PSL(R1T R1) we can see that there is a clear difference
between the PSL model and the baselines, so for this experiment adding the predictions

123

1568 P. Kouki et al.

of those cannot improve at a bigger scale the performance of the PSL model. Last, for the
experiment Names + Personal + Relational Info (1st + 2nd degree)we observe that adding
the predictions from the other algorithms slightly increases the F-measure by 0.8% for the
experiment PSL(R12T R1 + pred) and 0.5% for the experiment PSL(R12T R12 + pred). In
all cases, we observe that the increase in F-measure is the result of an increase in both the
precision and the recall of the model. (The only case that we observe a small decrease in
the recall is the experiment Names + Personal Info.) For the Wikidata dataset, we observe
that the F-measure improves significantly in all experiments when adding the predictions
from the baselines. This is a result of the increase of both the precision and the recall. More
specifically, we observe the following increases for the F-measure: 0.5% for the experiment
Names, 2.2% for the experimentNames+Personal Info, 2.7%and 2.0% for the two versions
of the experiment Names + Personal + Relational Info (1st degree).

Precision-recall balance depends on the chosen threshold As we discussed in Sect. 4.3 for
the PSL model we choose the optimal threshold to maximize the F-measure score. This
learned threshold achieves a precision-recall balance that favors recall at the expense of
precision. For both datasets, our model’s recall is significantly higher than all the baselines
in all the experiments. However, since PSL outputs soft truth values, changing the threshold
selection criteria in response to the application domain (e.g., prioritizing cleaner matches
over coverage) can allow the model to emphasize precision over recall.

Matching restrictions always improves F-measureWe note that valid solutions in our entity
resolution setting require that an entity matches at most one entity in another ego-centric
network. To enforce this restriction, we apply a 1–1 matching algorithm on the raw output
of all models (Sect. 4.4). Applying matching restrictions adjusts the precision–recall balance
of all models. For both PSL and the baselines across both datasets, when applying the 1–1
matching restriction algorithm,we observe a sizable increase in precision and amarginal drop
in recall. This pattern matches our expectations, since the algorithm removes predicted co-
references (harming recall) but is expected to primarily remove false-positive pairs (helping
precision). Overall, the application of the 1–1 matching restrictions improves the F-measure
for all algorithms and all datasets. Since the results before the 1–1 matching do not represent
valid solutions and it is not straightforward to compare across algorithms, we do not report
them here.

PSL is scalable to the number of instances, based on empirical results One motivation
for choosing PSL to implement our entity resolution model was the need to scale to large
datasets. To empirically validate the scalability of our approach, we vary the number of
instances, consisting of pairs of candidate co-referent entities, and measure the execution
time of inference. In Fig. 8, we plot the average execution time relative to the number of
candidate entity pairs. Our results indicate that our model scales almost linearly with respect
to the number of comparisons. For the NIH dataset, we note one prominent outlier, for a
family with limited relational evidence resulting in lower execution time. Conversely, for
the Wikidata, we observe two spikes which are caused by families that contain relatively
dense relational evidence compared to similar families. We finally note that we expect these
scalability results to hold as the datasets get bigger since the execution time depends on the
number of comparisons and the number of relations per family.

5.4 Effect of string similarity functions

In Sect. 4.2.2, we discussed that PSL can easily incorporate a variety of string similarity
functions. In the basic experiments (Sect. 5.3), all models (PSL and baselines) used the

123

Collective entity resolution in multi-relational familial networks 1569

Fig. 8 An analysis of the scalability of our system (a is for the NIH and b for the Wikidata). As the number of
potentially co-referent entity pairs increases, the execution time of our model grows linearly for both datasets

Levensthein and Jaro–Winkler string similarity functions. In this section, we experiment
with a wider set of string similarity functions and simple combinations of them in order
to study how such different functions can affect performance. More specifically, for all the
models (PSL and baselines) we ran the following experiments:

– Levenshtein (L) We use first, middle, and last name similarities computed using the
Levenshtein string similarity function only.

– Jaro–Winkler (JW) We add Jaro–Winkler similarities.
– Monge-Elkan (ME) We add Monge-Elkan similarities.
– Soundex (S) We add Soundex similarities.
– Jaro (J): We add Jaro similarities.
– max(L, JW,ME, S, J)We combine the string similarity functions by using the max-

imum value of all the similarity functions.
– min(L, JW,ME, S, J) We combine the string similarity functions by using the min-

imum value of all the similarity functions.

We note that for the PSL, we run the version PSL(N) and not the version PSL(N + pred),
i.e., we do not use the predictions from the other models in our PSL model. We present the
results in Table 4 for theNIH dataset. Aswe discussed, for theWikidata dataset we introduced
artificial noise to all the similarities, so we focus on the NIH dataset to get a clear picture of
the performance of the similarity functions. Here is a summary of the results from Table 4:

The performance of the models changes when the string similarity functions change For
PSL, the difference between the model that performs best and the model that performs worst
is 3% absolute value, for LMTs 2.5%, for SVMs 4.2%, and for LR 0.9%.

The setting of string similarity functions that performs best is different for each model For
PSL, the best model uses Levensthein, Jaro–Winkler, and Monge-Elkan. For LMTs, the best
model uses the min(L, JW , ME, S, J), for SVMs the best model uses the Levensthein, and
for LR the best model uses Levensthein, Jaro–Winkler, Monge-Elkan, and Soundex.

PSL models outperform baselines In each experiment, PSL outperforms all the baselines
using the same string similarity functions. With one exception (for max(L, JW , ME, S, J))
PSL statistically significantly outperforms the baselines that use the same string similarity
functions for the F-measure at α = 0.05 when using paired t test. For the experiment
max(L, JW , ME, S, J), LMTs outperform PSL (by 0.5% absolute value), but this dif-
ference is not considered statistically significant. For graphical illustration, Fig. 9 shows
the F-measure for the baselines and the PSL model for the setting that each model per-
formed the best. For example, for PSL, we plot the F-measure when using Levensthein,
Jaro–Winkler, and Monge-Elkan while for LMTs, we plot the F-measure when using the
min(L, JW , ME, S, J).

123

1570 P. Kouki et al.

Table 4 Performance of PSL and baseline classifiers for the experiment that uses only name similarities with
varying the string similarity functions used

NIH
Method String functions Precision (SD) Recall (SD) F-measure (SD)

PSL Levenshtein (L) 0.850 (0.017) 0.757 (0.044) 0.801 (0.029)

+ Jaro–Winkler (JW) 0.866 (0.021) 0.761 (0.028) 0.810 (0.023)

+ Monge-Elkan (ME) 0.871 (0.025) 0.766 (0.035) 0.815 (0.028)

+ Soundex (S) 0.866 (0.019) 0.765 (0.034) 0.812 (0.024)

+ Jaro (J) 0.868 (0.029) 0.762 (0.035) 0.812 (0.031)

max(L, JW , ME, S, J) 0.834 (0.025) 0.741 (0.027) 0.785 (0.024)

min(L, JW , ME, S, J) 0.861 (0.019) 0.752 (0.025) 0.803 (0.021)

LMTs Levenshtein (L) 0.874 (0.025) 0.699 (0.031) 0.776 (0.026)

+ Jaro–Winkler (JW) 0.874 (0.002) 0.717 (0.027) 0.787 (0.022)

+ Monge-Elkan (ME) 0.865 (0.026) 0.714 (0.031) 0.782 (0.027)

+ Soundex (S) 0.862 (0.026) 0.715 (0.027) 0.782 (0.024)

+ Jaro (J) 0.854 (0.028) 0.711 (0.028) 0.776 (0.024)

max(L, JW , ME, S, J) 0.848 (0.028) 0.739 (0.032) 0.789 (0.029)

min(L, JW , ME, S, J) 0.870 (0.026) 0.681 (0.037) 0.764 (0.030)

SVMs Levenshtein (L) 0.870 (0.027) 0.716 (0.029) 0.785 (0.025)

+ Jaro–Winkler (JW) 0.870 (0.022) 0.683 (0.027) 0.765 (0.020)

+ Monge-Elkan (ME) 0.867 (0.020) 0.675 (0.043) 0.759 (0.033)

+ Soundex (S) 0.870 (0.030) 0.68 (0.038) 0.763 (0.031)

+ Jaro (J) 0.870 (0.023) 0.679 (0.027) 0.763 (0.023)

max(L, JW , ME, S, J) 0.834 (0.035) 0.719 (0.033) 0.772 (0.033)

min(L, JW , ME, S, J) 0.858 (0.021) 0.656 (0.038) 0.743 (0.030)

LR Levenshtein (L) 0.871 (0.026) 0.689 (0.031) 0.769 (0.024)

+ Jaro–Winkler (JW) 0.870 (0.022) 0.683 (0.027) 0.765 (0.020)

+ Monge-Elkan (ME) 0.870 (0.024) 0.688 (0.026) 0.768 (0.021)

+ Soundex (S) 0.872 (0.024) 0.694 (0.026) 0.772 (0.021)

+ Jaro (J) 0.872 (0.023) 0.693 (0.027) 0.772 (0.021)

max(L, JW , ME, S, J) 0.827 (0.027) 0.715 (0.033) 0.767 (0.030)

min(L, JW , ME, S, J) 0.871 (0.024) 0.697 (0.029) 0.763 (0.023)

Numbers in parenthesis indicate standard deviations. For all experiments apart from one
(max(L, JW , ME, S, J)) PSL statistically significantly outperforms the baselines that use the same
string similarity functions for the f -measure at α = 0.05 when using paired t test

5.5 Effect of noise level

As we discussed, to simulate the noisy conditions of real-world datasets, we introduced
additive Gaussian noise to all the similarity scores (names, personal information, relational
information) of the Wikidata dataset drawn from a N (0, 0.16) distribution. In this section,
we experiment with varying the introduced noise. For all experiments, for all models (both
PSL and baselines), we additionally ran experiments when introducing noise from the fol-
lowing distributions: N (0, 0.01), N (0, 0.09), N (0, 0.49), N (0, 0.81). We present our results
in Table 10 where we plot the average F-measure computed over fivefold cross-validation
with respect to the noise added to the similarities. For the experiments of the PSL, we use the

123

Collective entity resolution in multi-relational familial networks 1571

0.75

0.80

0.85

LR SVMs LMTs PSL

F−
M
ea

su
re

Fig. 9 NIH dataset: graphical representation of the performance (F-measure) of the baselines and the PSL
model for the combination of string similarities that each model performs the best. For the PSL, we plot the
F-measure when using Levensthein, Jaro–Winkler, and Monge-Elkan. For LMTs, we report results when
using the min(L, JW , ME, S, J), for SVMs we report results when using the Levensthein, and for LR we
report results when using Levensthein, Jaro–Winkler, Monge-Elkan, and Soundex. Standard deviations are
shown around the top of each bar

following versions: for the experiment Names, we use the model PSL(N), for the experiment
Names + Personal Info the model PSL(P), and for the experiment Names + Personal +
Relational Info (1st degree) the model PSL(R1T R1). In other words, we do not include
the predictions from the other baseline models—but we expect them to perform better than
the ones we report here since all the experiments that include the predictions outperform
the experiments that do not include the predictions for the Wikidata dataset (Table 3). As
expected, when the noise increases, then the F-measure decreases and this is true for all mod-
els. Another observation is that with very small amount of noise (drawn from N (0, 0.01) or
N (0, 0.09) distributions) all the models perform similarly. However, when increasing the
noise (drawn from N (0, 0.16), N (0, 0.49), or N (0, 0.81) distributions), then the difference
between the models becomes more pronounced. When noise is drawn from these distribu-
tions, PSL consistently performs best for all experiments (Names, Names + Personal Info,
Names + Personal + Relational Info). This difference is statistically significantly better at
α = 0.05 when using paired t tests for all experiments. Among the baselines, LMTs perform
the best, followed by SVMs, and finally LR.

5.6 Performance with varying number of predictedmatches

In this section, our goal is to study the performance of the PSL models and the baseline
classifiers with respect to the threshold used for classifying the instances. As we discussed,
PSL learns the threshold using a validation set. The baseline classifiers also use some inter-
nal threshold to determine whether each pair is co-referent. Since the learned thresholds are
different for each model, it would be unfair to plot the F-measure with respect to the thresh-
old to compare the methods. Similarly, precision–recall curves in this setting would not be
informative: since the values of the thresholds are not related, it does not make sense to report
that a method A is better than method B at a particular threshold. To overcome the above
issues and make a fair comparison of the methods we follow the related work [4,16,27] and
choose the threshold so that each method produces the same number of predicted matches
(i.e., true positives and false positives). To this end, we compute the F-measure when varying
the number of predicted matches for each algorithm. For each value of the predicted matches,

123

1572 P. Kouki et al.

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-m

ea
su

re

σ2 of noise N(0, σ2)

Experiment: Names
LR

SVMs
LMTs

PSL

(a)

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-m

ea
su

re

σ2 of noise N(0, σ2)

Experiment: Names + Personal Info
LR

SVMs
LMTs

PSL

(b)

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-m

ea
su

re

σ2 of noise N(0, σ2)

Experiment: Names + Personal + Relational Info

LR
SVMs
LMTs

PSL

(c)

Fig. 10 An analysis of the performance of the models (PSL and baselines) when varying the noise in the
similarities for the Wikidata dataset (for the experiments a Names, b Names + Personal Info, c Names
+ Personal + Relational Info (1st degree)). We report average F-measure scores from a fivefold cross-
validation. As the noise increases, the F-measure decreases. For the minimum amount of noise all the models
perform similarly. However, as the noise increases, the difference in the performance becomes more evident

we compute the precision as the ratio of the true positives over the true positives and false
positives in the predicted matches, the recall as the ratio of the true positives over the true
positives and false negatives in the predicted matches, and the F-measure as the weighted
balance of the precision and recall. We present the results for the NIH dataset in Table 11 and
for the Wikidata in Table 12. In all experiments, we report the results of the PSL models that
include the predictions of the other classifiers. More specifically, we report the results of the
models: PSL(N+ pred), PSL(P+ pred), PSL(R1T R1+ pred), and PSL(R12T R12+ pred)
(only for the NIH dataset).

For the NIH dataset, for the experiment Names, we observe that PSL consistently out-
performs all the baselines when the number of matches is smaller than 950. However, when
the number of matches is larger than 1000, the performance of the PSL is lower than the
baselines. For all the other experiments (Names + Personal Info, Names + Personal +
Relational Info (1st degree), and Names + Personal + Relational Info (1st + 2nd degree))
all models perform similarly when the number of predicted matches is smaller than 800.
When the number of predicted matches is larger than 800, we can see that the PSL models
consistently outperform all the baselines. For the Wikidata dataset, for all the experiments
we observe that all the models perform similarly for small number of matches (up to 2500).
However, when the number of matches increases (i.e., larger than 2500), then we observe a
clear win of the PSL models.

123

Collective entity resolution in multi-relational familial networks 1573

 0.7

 0.8

 0.9

 400 600 800 1000 1200 1400 1600 1800

F
-m

ea
su

re

Number of predicted matches

Experiment: Names

LR
SVMs
LMTs

PSL

(a)

 0.7

 0.8

 0.9

 400 600 800 1000 1200 1400 1600 1800

F
-m

ea
su

re

Number of predicted matches

Experiment: Names + Personal Info

LR
SVMs
LMTs

PSL

(b)

 0.7

 0.8

 0.9

 400 600 800 1000 1200 1400 1600 1800

F
-m

ea
su

re

Number of predicted matches

Experiment: Names + Personal + Relational Info

LR
SVMs
LMTs

PSL

(c)

 0.7

 0.8

 0.9

 400 600 800 1000 1200 1400 1600 1800

F
-m

ea
su

re

Number of predicted matches

Experiment: Names + Personal + Relational Info

LR
SVMs
LMTs

PSL

(d) (1st+2nd degree)(1st degree)

Fig. 11 An analysis of the performance of the models (PSL and baselines) with respect to the number of the
predicted matches for the NIH dataset (for the experiments a Names, b Names + Personal Info, c Names +
Personal + Relational Info (1st degree) and d Names + Personal + Relational Info (1st + 2nd degree)).
We report average F-measure scores from a fivefold cross-validation

6 Related work

There is a large body of prior work in the general area of entity resolution [8]. In this work, we
propose a collective approach that makes extensive use of relational data. In the following,
we review collective relational entity resolution approaches which according to [31] can be
either iterative or purely collective.

For the iterative collective classification case, [5] propose a method based on greedy
clustering over the relationships. This work considers only one single relation type, while we
consider several types. [10] propose another iterative approach which combines contextual
information with similarity metrics across attributes. In our approach, we perform both ref-
erence and relation enrichment, by applying inversion and imputation. Finally, [20] propose
an approach for the reference disambiguation problem where the entities are already known.
In our case, we do not know the entities beforehand.

In the case of purely collective approaches, [1] propose the Dedupalog framework for
collective entity resolution with both soft and hard constraints. Users define a program with
hard and soft rules, and the approach produces a clustering such that no hard constraints
are violated and the number of violated soft constraints is minimized. Dedupalog is well
suited for datasets having the need to satisfy several matching restrictions. In our case,
we have several soft rules with a smaller number of constraints. In another approach, [9]
design a conditional randomfieldmodel incorporating relationship dependencies and propose
an algorithm that jointly performs entity resolution over the model. In this work too, the

123

1574 P. Kouki et al.

 0.6

 0.7

 0.8

 0.9

 1500 2000 2500 3000 3500 4000 4500 5000

F
-m

ea
su

re

Number of predicted matches

Experiment: Names

LR
SVMs
LMTs

PSL

(a)

 0.6

 0.7

 0.8

 0.9

 1500 2000 2500 3000 3500 4000 4500 5000

F
-m

ea
su

re

Number of predicted matches

Experiment: Names and Personal Info

LR
SVMs
LMTs

PSL

(b)

(c)

 0.6

 0.7

 0.8

 0.9

 1500 2000 2500 3000 3500 4000 4500 5000

F
-m

ea
su

re

Number of predicted matches

Experiment: Names + Personal + Relational Info

LR
SVMs
LMTs

PSL

(1st degree)

Fig. 12 An analysis of the performance of the models (PSL and baselines) with respect to the number of
the predicted matches for the Wikidata dataset (for the experiments a Names, b Names + Personal Info,
c Names + Personal + Relational Info (1st degree)). We report average F-measure scores from a fivefold
cross-validation

number of relationship types considered is small. Finally, [32] propose a generalization of
the Fellegi–Sunter model [13] that combines first-order logic and Markov random fields to
perform collective classification. The proposed Markov logic networks (MLNs) operate on
undirected graphical models using a first-order logic as their template language, similar to
PSL. However, the predicates take only boolean values, while in PSL the predicates take soft
truth values in the range [0, 1]. Soft truth values are more appropriate in the entity resolution
problem setting for two reasons: first, they can better capture notion of similarity (such as
name similarity) and second, the predictions can be interpreted as probabilities (in the range
[0, 1])which is convenientwhen applying thematching restrictions algorithm. (Wenote again
that this algorithm requires as input a ranked list.) Finally, extensive experiments from the
related work [2,3] have shown that HL-MRFs can achieve improved performance in much
less time compared to MLNs. As HL-MRFs are faster and their output is directly usable
from a matching restriction approach that is needed in our scenario, we do not compare our
approach to MLNs.

Overall, the purely collective approaches come with a high computational cost for per-
forming probabilistic inference. As a result, they cannot scale to large datasets unless we use
techniques that make the EM algorithm scalable [31]. Our approach uses PSL which ensures
scalable and exact inference by solving a convex optimization problem in parallel. Speed and
scalability is of paramount importance in entity resolution and in particular when we run the
prediction task collectively using transitivity and bijection rules.

123

Collective entity resolution in multi-relational familial networks 1575

Regarding the problem of entity resolution in familial networks, we recently proposed a
first approach [21]. The problem setting is the same as in the current work, but the approach
is non-collective using well-studied classifiers enhanced with features capturing relational
similarity. In this work, we propose a more sophisticated collective approach to the familial
entity resolution problem.

Additionally, there are some works from the ontology alignment and knowledge graph
identification domains that are close to our approach. [33] propose a probabilistic approach
for ontology alignment. The tool accepts as input two ontologies and distinguishes the same
relations, classes, and instances. As a result, the approach does not take into account transi-
tivity and bijection constraints, which are key features in the familial networks in order both
to provide a valid solution and to improve performance. In another approach, [30] use PSL
to design a general mechanism for entity resolution in knowledge graphs, a setting with a
similarly rich relational structure. Their work considers entity resolution within and between
graphs and provides general templates for using attributes and relationships in non-collective
and collective rules. However, familial networks have unique characteristics and constraints
that differ substantially from knowledge graphs, and in particular, they do not explicitly con-
sider the problem of entity resolution across several subgraphs. Finally, as we mentioned in
Introduction, this work is an extended version of our recent work [22].

7 Conclusions and future work

Entity resolution in familial networks poses several challenges, including heterogeneous rela-
tionships that introduce collective dependencies between decisions and inaccurate attribute
values that undermine classical approaches. In this work, we propose a scalable collective
approach based on probabilistic soft logic that leverages attribute similarities, relational infor-
mation, logical constraints, and predictions from other algorithms. A key differentiator of
our approach is the ability to support bijection and different types of transitive relational
rules that can model the complex familial relationships. Moreover, our method is capable
of using training data to learn the weight of different similarity scores and relational fea-
tures, an important ingredient of relational entity resolution. In our experimental evaluation,
we demonstrated that our framework can effectively combine different signals, resulting in
improved performance over state-of-the-art approaches on two datasets. In our experimental
evaluation, we also showed that, in most cases, our model outperforms the baselines for a
varying set of similarity functions and for varying levels of noise. Additionally, the exper-
imental evaluation showed that the PSL models outperform the baselines when we fix the
number of predicted matches.

In this paper, wemotivate the importance of our approachwith an application for resolving
mentions in healthcare records. However, the problem of entity resolution in richly struc-
tured domains has many additional applications. For example, many companies5 provide
genealogical discovery services, which require a similar entity resolution process. We also
foresee applications in social networks, where the problem of linking user accounts across
several social platforms in the presence of a diverse set of relationships (e.g., friends, follow-
ers, followees, family cycles, shared groups), ambiguous names, and collective constraints
such as bijection and transitivity, provide a similar set of opportunities and challenges.

In future work, we plan to apply our approach to a broader set of problems and dis-
cuss general strategies for multi-relational entity resolution. Additionally, we plan to explore

5 ancestry.com, genealogy.com, familysearch.org, 23andMe.com.

123

1576 P. Kouki et al.

structured output learning techniques [28] inside PSL. Such techniques can directly consider
the matching constraints during the learning phase instead of post-processing the classifi-
cation results. We also plan to explore temporal relations, e.g., ex-wife, and more complex
relationships, e.g., adopted child. Finally, in certain cases, we might inadvertently introduce
inaccurate relations when following the approach of Sect. 3. To address this, we plan to
expand our work to account for uncertainty in the relational normalization step by assum-
ing a probability assigned to each populated relationship instead of the hard values that we
currently assign.

Acknowledgements We would like to thank Peter Christen and Jon Berry for insightful comments on this
paper. This work was partially supported by the National Science Foundation Grants IIS-1218488, CCF-
1740850, and IIS-1703331 and by the National Human Genome Research Institute Division of Intramural
Research at theNational Institutes ofHealth (ZIAHG2000397 andZIAHG200395,Koehly PI).Wewould also
like to thank the Sandia LDRD (Laboratory-Directed Research and Development) program for support. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation, the National Institutes of Health,
or the Sandia Labs.

APPENDIX: PSLmodel rules

Name similarity rules

SimFirstNameJaroWinkler (m1,m2) ⇒ Same(m1,m2)

SimMaidenNameJaroWinkler (m1,m2) ⇒ Same(m1,m2)

SimLastNameJaroWinkler (m1,m2) ⇒ Same(m1,m2)

¬SimFirstNameJaroWinkler (m1,m2) ⇒ ¬Same(m1,m2)

¬SimMaidenNameJaroWinkler (m1,m2) ⇒ ¬Same(m1,m2)

¬SimLastNameJaroWinkler (m1,m2) ⇒ ¬Same(m1,m2)

SimFirstNameLevenshtein(m1,m2) ⇒ Same(m1,m2)

SimMaidenNameLevenshtein(m1,m2) ⇒ Same(m1,m2)

SimLastNameLevenshtein(m1,m2) ⇒ Same(m1,m2)

¬SimFirstNameLevenshtein(m1,m2) ⇒ ¬Same(m1,m2)

¬SimMaidenNameLevenshtein(m1,m2) ⇒ ¬Same(m1,m2)

¬SimLastNameLevenshtein(m1,m2) ⇒ ¬Same(m1,m2)

Personal information similarity rules

KnownAge(m1) ∧ KnownAge(m2) ∧ SimAge(m1,m2) ⇒ Same(m1,m2)

KnownAge(m1) ∧ KnownAge(m2) ∧ ¬SimAge(m1,m2) ⇒ ¬Same(m1,m2)

¬eqGender(m1,m2) ⇒ ¬Same(m1,m2)

¬eqLiving(m1,m2) ⇒ ¬Same(m1,m2)

Relational similarity rules of 1st degree

SimMother(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

SimFather(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

SimDaughter(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

SimSon(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

SimSister(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

SimBrother(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

SimSpouse(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

Relational similarity rules of 2nd degree

123

Collective entity resolution in multi-relational familial networks 1577

SimGrandMother(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

SimGrandFather(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

SimGrandDaughter(ma,mb) ∧ eqGender(m1,m2) ⇒ Same(m1,m2)

SimGrandSon(ma,mb)∧
eqGender(m1,m2) ⇒ Same(m1,m2)

SimAunt(ma,mb)∧
eqGender(m1,m2) ⇒ Same(m1,m2)

SimUncle(ma,mb)∧
eqGender(m1,m2) ⇒ Same(m1,m2)

SimNiece(ma,mb)∧
eqGender(m1,m2) ⇒ Same(m1,m2)

SimNephew(ma,mb)∧
eqGender(m1,m2) ⇒ Same(m1,m2)

Transitive relational (similarity) rules of 1st degree

Rel(Mother,m1,ma) ∧ Rel(Mother,m2,mb) ∧ Same(m1,m2) ∧ eqGender(ma,mb) ⇒
Same(ma,mb)

Rel(Father,m1,ma) ∧ Rel(Father,m2,mb) ∧ Same(m1,m2) ∧ eqGender(ma,mb) ⇒
Same(ma,mb)

Rel(Spouse,m1,ma) ∧ Rel(Spouse,m2,mb) ∧ Same(m1,m2) ∧ eqGender(ma,mb) ⇒
Same(ma,mb)

Rel(Spouse,m1,ma) ∧ Rel(Spouse,m2,mb) ∧ ¬Same(ma,mb) ⇒ ¬Same(ma,mb)

Rel(Daughter,m1,ma)∧Rel(Daughter,m2,mb)∧Same(m1,m2)∧SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(Son,m1,ma) ∧ Rel(Son,m2,mb) ∧ Same(m1,m2) ∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(Sister,m1,ma) ∧ Rel(Sister,m2,mb) ∧ Same(m1,m2) ∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(Brother,m1,ma) ∧Rel(Brother,m2,mb) ∧ Same(m1,m2) ∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Transitive relational (similarity) rules of 2nd degree

Rel(GrandMother,m1,ma)∧Rel(GrandMother,m2,mb)∧Same(m1,m2)∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(GrandFather,m1,ma)∧Rel(GrandFather,m2,mb)∧Same(m1,m2)∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(GrandDaughter,m1,ma) ∧ Rel(GrandDaughter,m2,mb) ∧ Same(m1,m2) ∧
SimName(ma,mb) ∧ eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(GrandSon,m1,ma) ∧ Rel(GrandSon,m2,mb) ∧ Same(m1,m2) ∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(Aunt,m1,ma) ∧ Rel(Aunt,m2,mb) ∧ Same(m1,m2) ∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(Uncle,m1,ma) ∧ Rel(Uncle,m2,mb) ∧ Same(m1,m2) ∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(Niece,m1,ma) ∧ Rel(Niece,m2,mb) ∧ Same(m1,m2) ∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

Rel(Nephew,m1,ma) ∧ Rel(Nephew,m2,mb) ∧ Same(m1,m2) ∧ SimName(ma,mb)∧
eqGender(ma,mb) ⇒ Same(ma,mb)

123

1578 P. Kouki et al.

Bijection and transitivity rules

FR(ma,R1) ∧ FR(mb,R2) ∧ FR(mc,R2) ∧ Same(ma,mb) ⇒ ¬Same(ma,mc)

FR(ma,R1)∧FR(mb,R2)∧FR(mc,R3)∧Same(ma,mb)∧Same(mb,mc) ⇒ Same(ma,mc)

Rules to leverage existing classification algorithms

SameLR(m1,m2) ⇒ Same(m1,m2)

¬SameLR(m1,m2) ⇒ ¬Same(m1,m2)

SameSVMs(m1,m2) ⇒ Same(m1,m2)

¬SameSVMs(m1,m2) ⇒ ¬Same(m1,m2)

SameLMTs(m1,m2) ⇒ Same(m1,m2)

¬SameLMTs(m1,m2) ⇒ ¬Same(m1,m2)

SameLR(m1,m2) ∧ SameSVMs(m1,m2) ∧ SameLMTs(m1,m2) ⇒ Same(m1,m2)

¬SameLR(m1,m2) ∧ ¬SameSVMs(m1,m2) ∧ ¬SameLMTs(m1,m2) ⇒ ¬Same(m1,m2)

Prior rule

¬Same(m1,m2)

References

1. Arasu A, Ré C, Suciu D (2009) Large-scale deduplication with constraints using dedupalog. In: IEEE
international conference on data engineering (ICDE)

2. Bach S, Broecheler M, Huang B, Getoor L (2017) Hinge-loss markov random fields and probabilistic
soft logic. J Mach Learn Res (JMLR) 18(109):1–67

3. Bach S, Huang B, London B, Getoor L (2013) Hinge-loss Markov random fields: convex inference for
structured prediction. In: Uncertainty in artificial intelligence (UAI)

4. Belin T, Rubin D (1995) A method for calibrating false-match rates in record linkage. J Am Stat Assoc
90(430):694–707

5. Bhattacharya I, Getoor L (2007) Collective entity resolution in relational data. ACMTrans Knowl Discov
Data (TKDD) 1(1). https://doi.org/10.1145/1217299.1217304

6. Cessie S, Houwelingen J (1992) Ridge estimators in logistic regression. Appl Stat 41(1):191–201
7. Chang C, Lin C (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol

(TIST) 2(3):2:27:1–27:27
8. Christen P (2012) Data matching: concepts and techniques for record linkage, entity resolution, and

duplicate detection. Springer, Berlin
9. Culotta A, McCallum A (2005) Joint deduplication of multiple record types in relational data. In: ACM

international conference on information and knowledge management (CIKM)
10. Dong X, Halevy A,Madhavan J (2005) Reference reconciliation in complex information spaces. In: ACM

special interest group on management of data (SIGMOD)
11. Driessens K, Reutemann P, Pfahringer B, Leschi C (2006) Using weighted nearest neighbor to benefit

from unlabeled data. In: Pacific-Asia conference on knowledge discovery and data mining (PAKDD)
12. Efremova J, Ranjbar-Sahraei B, Rahmani H, Oliehoek F, Calders T, Tuyls K,Weiss G (2015)Multi-source

entity resolution for genealogical data, population reconstruction
13. Fellegi P, Sunter B (1969) A theory for record linkage. J Am Stat Assoc 64(328):1183–1210
14. Frank E, Hall M, Witten I (2016) The WEKA Workbench. In: Gray J (ed) Practical machine learning

tools and techniques. Morgan Kaufmann, Burlington (Online appendix for data mining)
15. Goergen A, Ashida S, Skapinsky K, de Heer H, Wilkinson A, Koehly L (2016) Knowledge is power:

improving family health history knowledge of diabetes and heart disease among multigenerational mex-
ican origin families. Public Health Genomics 19(2):93–101

16. Hand D, Christen P (2017) A note on using the f-measure for evaluating record linkage algorithms. Stat
Comput 28(3):539–547

17. Hanneman R, Riddle F (2005) Introduction to social networkmethods. University of California, Riverside
18. Harron K, Wade A, Gilbert R, Muller-Pebody B, Goldstein H (2014) Evaluating bias due to data linkage

error in electronic healthcare records. BMC Med Res Methodol 14:36
19. Hsu C, Chang C, Lin C (2003) A practical guide to support vector classification. Technical report,

Department of Computer Science, National Taiwan University

123

https://doi.org/10.1145/1217299.1217304

Collective entity resolution in multi-relational familial networks 1579

20. Kalashnikov D, Mehrotra S (2006) Domain-independent data cleaning via analysis of entity-relationship
graph. ACM Trans Database Syst (TODS) 31(2):716–767

21. Kouki P, Marcum C, Koehly L, Getoor L (2016) Entity resolution in familial networks. In: SIGKDD
conference on knowledge discovery and data mining (KDD), workshop on mining and learning with
graphs

22. Kouki P, Pujara J, MarcumC, Koehly L, Getoor L (2017) Collective entity resolution in familial networks.
In: IEEE international conference on data mining (ICDM)

23. Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 95(1–2):161–205
24. Li X, Shen C (2008) Linkage of patient records from disparate sources. StatMethodsMed Res 22(1):31–8
25. Lin J, Marcum C, Myers M, Koehly L (2017) Put the family back in family health history: a multiple-

informant approach. Am J Prev Med 5(52):640–644
26. Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31–88
27. Newcombe H (1988) Handbook of record linkage: methods for health and statistical studies, administra-

tion, and business. Oxford University Press Inc, Oxford
28. Nowozin S, Gehler P, Jancsary J, Lampert C (2014) Advanced structured prediction. The MIT Press,

Cambridge
29. Platanios E, PoonH,Mitchell T,Horvitz E (2017) Estimating accuracy fromunlabeled data: a probabilistic

logic approach. In: Conference on neural information processing systems (NIPS)
30. Pujara J, Getoor L (2016) Generic statistical relational entity resolution in knowledge graphs. In: Inter-

national joint conference on artificial intelligence (IJCAI), workshop on statistical relational artificial
intelligence (StarAI)

31. Rastogi V, Dalvi N, Garofalakis M (2011) Large-scale collective entity matching. In: International con-
ference on very large databases (VLDB)

32. Singla P, Domingos P (2006) Entity resolution with Markov logic. In: IEEE international conference on
data mining (ICDM)

33. Suchanek F, Abiteboul S, Senellart P (2011) Paris: probabilistic alignment of relations, instances, and
schema. In: Proceedings of the very large data bases endowment (PVLDB), vol 5(3)

34. Winkler W (2006) Overview of record linkage and current research directions. Technical report, US
Census Bureau

Pigi Kouki earned her PhD from the Department of Technology and
Information Management at the University of California Santa Cruz.
Her research interests include entity resolution in relational networks,
hybrid recommender systems, and explainable and fair decision sup-
port systems. Her work is published in RecSys and in ICDM. She has
earned two masters degrees, one at the University of California Santa
Cruz and one at the University of Athens, Greece. Her BS is in Com-
puter Science at the University of Athens, Greece.

123

1580 P. Kouki et al.

Jay Pujara is a research assistant professor of Computer Science at the
University of Southern California whose principal areas of research
are machine learning, artificial intelligence, and data science. He com-
pleted a postdoc at UC Santa Cruz, earned his Ph.D. at the University
of Maryland, College Park, and received his M.S. and B.S. at Carnegie
Mellon University. Prior to his Ph.D., Jay spent 6years at Yahoo! work-
ing on mail spam detection and user trust, and he has also worked at
Google, LinkedIn, and Oracle. Jay is the author of over thirty peer-
reviewed publications and has received three best paper awards for
his work. He is a recognized authority on knowledge graphs and has
organized the Automatic Knowledge Base Construction (AKBC) and
Statistical Relational AI (StaRAI) workshops, presented tutorials on
knowledge graph construction at AAAI and WSDM, and had his work
featured in AI Magazine. For more information, visit https://www.
jaypujara.org.

Christopher Steven Marcum (UC-Irvine Dept. of Sociology, 2011) is a
mathematical sociologist working as a staff scientist and methodologist
in the Intramural Research Program of the National Human Genome
Research Institute. His research interests include aging and the life
course, social interaction, network dynamics, and health. At Genome,
his work is primarily focused on the network dynamics of health com-
munication and social behavior within families challenged with herita-
ble disease. In addition, he has a lively program of research in network
science methodology, theory, and analysis largely on the topics of rela-
tional event and exponential random graph modeling frameworks.

Laura M. Koehly (University of Illinois, Psychology, 1996) is chief
and senior investigator in the Social and Behavioral Research Branch,
National Human Genome Research Institute, National Institutes of
Health. Dr. Koehly heads the Social Network Methods Section, where
ongoing research activities focus on understanding how families com-
municate about and adapt to inherited disease risk. The hallmark of
Dr. Koehly’s research is the use of multi-informant designs to map the
social systems within which family members are embedded, resulting
in a large corpus of rich network data. This resource allows her group
to advance new methods for social network data that can be used to
model complex systems to facilitate the exploration of genomic, social,
and environmental contributions to families’ responses to disease risk
and diagnoses. Ultimately, findings from this programmatic work will
inform development of tailored approaches that leverage both genomic
information and interpersonal processes to improve health outcomes.

123

https://www.jaypujara.org
https://www.jaypujara.org

Collective entity resolution in multi-relational familial networks 1581

Lise Getoor is a Professor in the Computer Science Department at UC
Santa Cruz and founding Director of the UC Santa Cruz Data Science
Research Center. Her research areas include machine learning and rea-
soning under uncertainty, with a focus on graph and network data. She
has over 250 publications, including 11 best paper awards. She is a
Fellow of the Association for Artificial Intelligence, an elected board
member of the International Machine Learning Society, has served on
the board of the Computing Research Association (CRA) and AAAI
Council, and has served as Machine Learning Journal Action Editor,
Associate Editor for the ACM Transactions of Knowledge Discovery
from Data, and JAIR Associate Editor. She received her Ph.D. from
Stanford University in 2001, her M.S. from UC Berkeley, and her B.S.
from UC Santa Barbara, and was a Professor in the Computer Science
Department at the University of Maryland, College Park, from 2001 to
2013.

123

	Collective entity resolution in multi-relational familial networks
	Abstract
	1 Introduction
	2 Problem setting
	3 Preprocessing via relational normalization
	4 Entity resolution model for familial networks
	4.1 Probabilistic soft logic (PSL)
	4.2 PSL model
	4.2.1 Scoping the rules
	4.2.2 Name similarity rules
	4.2.3 Personal information similarity rules
	4.2.4 Relational similarity rules
	4.2.5 Transitive relational (similarity) rules
	4.2.6 Bijection and transitivity rules
	4.2.7 Prior rule
	4.2.8 Rules to leverage existing classification algorithms
	4.2.9 Flexible modeling

	4.3 Learning the PSL model
	4.4 Satisfying matching restrictions

	5 Experimental validation
	5.1 Datasets and baselines
	5.2 Experimental setup
	5.3 Performance of PSL and baselines
	5.3.1 Discussion

	5.4 Effect of string similarity functions
	5.5 Effect of noise level
	5.6 Performance with varying number of predicted matches

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	APPENDIX: PSL model rules
	References

