Tabular Cell Classification Using Pre-Trained Cell
EmbeddingsT

Majid Ghasemi-Gol, Jay Pujara, Pedro Szekely
Information Science Institute, University of Southern California, Marina Del Rey, CA 90292
{ghasemig, jpujara, pszekely} @isi.edu

Abstract—There is a large amount of data on the web in
tabular form, such as excel sheets, CSVs, and web tables. Often,
tabular data is meant for human consumption, using data layouts
that are difficult for machines to interpret automatically. Previous
work uses the stylistic features of tabular cells (e.g. font size,
border type, background color) to classify tabular cells by their
role in the data layout of the document (top attribute, data,
metadata, etc.). In this paper, we propose a method to embed
the semantic and contextual information about tabular cells
in a low dimension cell embedding space. We then propose
an RNN-based classification technique to use these cell vector
representations, combining them with stylistic features intro-
duced in previous work, in order to improve the performance
of cell type classification in complex documents. We evaluate
the performance of our system on three datasets containing
documents with various data layouts, in two settings, in-domain,
and cross-domain training. Our evaluation result shows that our
proposed cell vector representations in combination with our
RNN-based classification technique significantly improves cell
type classification performance.

I. INTRODUCTION

A vast amount of useful data is available in structured
tabular formats, such as spreadsheets, comma-separated value
files, and web tables. Although tabular data is represented
in a structured form following established principles of data
organization [1], [2], these data are often diverse and complex.
Tabular data covers many different domains and subjects and
is expressed in formats that include hierarchical relationships
(e.g. Figure 1c) and concatenation of disparate data (e.g.
Figure 1b). As a result of this complexity, tabular data can
be cognitively challenging for humans to understand, and
automated techniques for table understanding still struggle to
parse arbitrary datasets. One useful step towards understanding
tabular data is to identify elements of tabular data layout by
understanding the role of each tabular cell in the data layout
of the tabular document.

There are different definitions and terminologies used for
different roles in tabular data layouts in the literature [3], [4],
[5]. We combine the terminologies and definitions used in [4]
and [5] which suggest that there are six major cell types in
tabular documents (Figure 1):

1) Metadata (MD): presents meta-data information for the
document or part of the document. This meta-data infor-
mation usually explains what the content of a document

T This material is based upon work supported by United States Air Force
under Contract No. FA8650-17-C-7715.

(or part of a document) is about. For example, the top
meta-data block in figures 1c and 1b contains table titles
and explanation of what the table presents. The inner
meta-data blocks in Figure 1b is meant to state the
categories of characteristics in the first column.

Top Attribute (TA): top attributes are the headers for
table columns which can be hierarchical as in Fig. 1a.
Left Attribute (LA): left attributes are the row headers,
and similarly to top attributes, they can be hierarchical.
Data (D): data cells are the core body of the table.
Derived (B): a cell (often with numerical value) that is
derived from other cells in the table, e.g. summation of
values in a column.

Footnotes (N): present additional information about the
document or part of the document.

2)
3)

4)
)

6)

Pre-trained vector representations are an essential part of
state of the art systems for several natural language processing
tasks, including sequence tagging [6], text classification [7],
and machine translation [8]. Pre-training can be performed
on a large corpus of unlabeled data, and a downstream task
can be achieved using the resulting vector representations
as features [9]. In this paper, we present a novel method
for learning pre-trained vector representations of tabular cells
(cell embeddings) and propose a novel system for classifying
tabular cells by their role type using the cell embeddings.

Previous approaches for cell role type classification focused
on manually-engineered stylistic, formatting, and typographic
features of tabular cells [10], [11], [5]. Examples of such
features are background color, font size, cell data type, and
presence of capitalized letters. These features are often depen-
dent on richly-formatted documents in a particular represen-
tation (such as Excel documents or HTML), preventing such
approaches from being universally applicable. In particular,
a large number of published data sources are represented
in textual, tab or comma-separated formats where stylistic
features are unavailable. For example data.gov contains about
19,000 CSV files from various domains. Moreover, such fea-
tures can be prone to human error (incorrectly applying bold
formatting) or overfitting to specific stylistic, formatting, or
typographic conventions that cannot transfer to new domains.
Unlike prior work, our proposed pre-trained cell embeddings
learn representations from large number of tables using the
content of cells alongside presentation features. Our pre-
training method leverages regularities in structure, style, and

content that are present in tabular data [1], [2]. We use these
cell embeddings as cell features and propose a supervised
classification system to achieve the cell role type classification
downstream task.

To achieve the cell role type classification task using the pre-
trained cell embeddings, we develop a novel, supervised cell
classification model using recurrent neural networks (RNNs).
The RNN model uses our cell embeddings, whose repre-
sentation captures the context of nearby cells, and intro-
duces additional long-range dependencies and context. Prior
work [11], [10] sought to capture these dependencies using
graphical models such as CRFs, but such approaches are
time-consuming to train and, in our experiments, show poor
performance. Our simple and elegant architecture uses two,
independent long short-term memory (LSTM) networks, one
for rows and one for columns. Each of the LSTM networks
uses cell embeddings with a context learned from prior cells.
Together, the output vectors of these LSTMs are used to
classify cells into the six cell role types.

As a motivating example of the power of cell embeddings
in conjunction with LSTM classification, consider the problem
of identifying derived cells, a common classification task for
table understanding. This task requires identifying cells whose
values are computed from other cells, often using aggregation
formulas such as sum, average, or variance. Successful ap-
proaches for Excel spreadsheets use the presence of formulas
to identify derived cells, but formulas are unavailable for web
and text-based representations. Feature-based methods attempt
to identify predictive labels (such as the word “total”), but a
manual process for curating such features cannot scale to the
vast number of tables on the web, where domain- or language-
specific keywords abound (e.g., “ogétem” meaning total in
Polish). Our embedding-based approach can use regularities
in the use of words such as "total” or ogdtem” across a large
corpus of tables to improve accuracy of detecting adjacent
derived cells. In our experiments, transforming Excel sheets
into CSV resulted in a dramatic 68% decline in F1 scores for
feature-based classification of derived cells. In contrast, our
cell embedding approach outperforms feature-based methods
for both richly-formatted Excel documents and impoverished
CSV representations and maintain performance with a much
smaller 27% decline.

We evaluate our method on three datasets, deexcelerator
(DeEx) !, SAUS 2, and CIUS. The first two datasets have been
used in previous work [5], [10]. DeEx is an annotated dataset,
but SAUS does not contain annotations and we manually
annotated its documents. Also, we collected the CIUS dataset
from fbi.gov website 3, and manually annotated its documents
4. These datasets contain tables with complex data layouts and
contain data from different domains (financial, business, crime,
agricultural, and health-care). Example documents shown in

Uhttps://wwwadb.inf.tu-dresden.de/research-projects/deexcelarator/
Zhttp://dbgroup.eecs.umich.edu/project/sheets/datasets.htm
3https://ucr.fbi.gov/crime-in-the-u.s

“4data and code: github.com/majidghgol/TabularCellTypeClassification

figures la, 1b, and 1c are from financial, crime, and health-
care domains respectively.

We compare the performance of our system with previous
feature-based techniques [10], [5]. In our evaluations, we test
our system under both in-domain and cross-domain evaluation
settings. The in-domain setting investigates the trainablity of
our proposed methods. The cross-domain setting investigates
the generalizability of our methods in a transfer learning
scenario. In the in-domain setting, we train and test our system
on each dataset separately. In the cross-domain setting, we
train the model on two of our datasets and test it on the other
dataset. Our experiments show that our system performs better
than the baseline systems in both these settings.

The remainder of the paper presents our key technical
contributions:

o a method for generating embedding representations for
cells in a tabular data leveraging contextual content and
stylistic features (§I1-A)

o an RNN-based cell classification model using pre-trained
cell embeddings and capturing long-range structural de-
pendencies (§1I-B)

o empirical evaluation on three real-world benchmark
datasets that show state-of-the-art performance (§III)

II. METHOD

Our method for cell type classification consists of two
steps. We first build an embedding model to generate vector
representations for cells in tabular documents (§II-A). In the
second step, we develop and train an RNN-based classifier that
uses these vector representations for cell type classification
(§II-B). The cell vector representation model itself consists
of two parts: the first represents global semantic information
using contextual cells to produce a latent representation of the
cell (§II-A1), while the second represents local information
from latent patterns of stylistic features of each cell (§I1-A2).
Our classification method observes the sequence of the cells
in each row and column to take into account dependencies
between cell types for cells in a tabular document. The
overview of our system is shown in Figure 2.

A. Pre-training Cell Embeddings

We aim to build an unsupervised system which learns
cell vector representations from unlabeled tabular documents.
More formally, given a document D expressed as a tabular
matrix with N rows and M columns, D = {C;;;1 < i <
N, 1< j < M}, we define a collection of cells (C5,5°8). We
wish to learn an embedding operator (E) that maps a tabular
cell C; ; and its context to a k-dimensional vector, V; ; € R¥.
In this paper, our E consists of two parts. The first part
represents global semantic information for a tabular cells using
its textual content and context (E.). The second part represents
local information from latent patterns of stylistic features of
each cell (E;). We then define the cell embedding operator
as concatenation of the contextual and stylistic embedding
operators, i.e. E £ < E. E, >.

A B C D ; F G H 1 J

1 Security/ Trade Settlement Instru- Posi- Strike Notional
s Vi

K L

Terminations —|

Ticker Date Date _ment __ Cost __tion __Price Units alue Date Units_ 3>
PUBLICS A Y c
3TEC Warrants 080300 03303 Swap $ Long § 118 $ 91,937 1 Table 198. Use of Mammography for Women 40 Years Old and Over =
i 3 303 Swa g 534 7,648,25 2527 2552 = X oot
Active Power 080300 080303 Swap Long § 53.00 S 67,648299 011601 S 55,276 2 Iby) Patient Charsotesistios 199015512005 S
Avici Systems 080300 080303 Swap S Long S 162.50 S 177,681,725 011101 $ 44 1,000
Carrizo Warrants 0803000 080303 Swap S Long § 420 s 655,532
8 | Catalytica Afler 12/14 080300 080303 Swap Long S 116,115,000 o
Paradigm 0803000 080303 Swap § Long § 588 50891 § 351,860
Place Resources 080300 080303 Swap S Long § 168 735000 § 1237703 1100900 $ 194 735,000 6 Characteristic 1990 2000 \1 2005 \2 3
DevX Energy Common | 080300 080303 Swap S Long S 1404 10,135 § 142,287
2| DevX Energy Pref 080300 080303 Swap S Long § 407 127,500 § 518400 1214100 § 700 127,500 8 Women 40 years old and over, total \3 51.4 70.4 6.8
3| Quicksilver 080300 080303 Swap S Long S 7.63 804243 S 6132353 120800 § 672 804243 5 40 to 49 years old . s
(a) 10 50 years old and over
50 to 64 years old
A s c) E F ° H K L 12 65 years old and over
* Fulltime Law Enforcement Employees — P13 wnite, non-Hispanic
| 2 by Population Group = 14 Black, non-Hispanic
3 Percent Male and Female, 2007 _— - 15 | e
‘ Pecetotims | Tou | Peesicilian | ot | st | 16 [vears of school completed:
5 Population group Femsle | Touloffoss Male Female | civiians | Male _Femule | agencies populaton | 3 No high school diploma or GED 36.4 57.7 52.8
6 TOTAL AGENCIES: 272 699850 883 17 38104 385 1676 28586666 18 High school diploma or GED 52.7 69.7 64.9
7 TOTAL CITIES 581,888 252 882 08 135219 306 L2 192561318 e -y e
8 GROUPI (250,000 and over) 203,771 208 8.0 170 sLum 321 7 53815350 ScmelicolTegeforinord c2s e °
91,000,000 and over (Group I subsct) 113,693 315 817 183 29841 313 20 |Poverty status: \5
[T10 500,000 999,999 (Group I subset) s1812 2658 840 160 169 359 21 | WEsYSHIEGeEEy 28.7 s4.8
D11 250,000 10 499,999 (Group | subset) 38,266 286 85.4 146 30.1 R N
12 GROUP 11 (100,000 10 249,999) 9425 271 80 120 25 22 At or above poverty 54.8 2
13 GROUP 11l (50,000 10 9.999) 68944 240 %04 96 270 2
14 GROUP IV (25,000 t0 49,999) 64,503 21 914 86 7.9 1 S
15 GROUP V (10,000 1o 24,999) 70372 209 923 77 69 1 Health Statistics,
16 GROUP VI (under 10,000) 104873 793 7 63 6
7 METROPOLITAN COUNTIES 301,088 2 53 4
16 NONMETROPOLITAN COUNTIES 134978 720 23 s
(b)

Suburban
20 Suburban arca exclud

i less than 50,000 inhabitan

th e olitan Staistical Area (s
ted with a principal city. The ag wit c

i this table

also appear in other

Fig. 1: Table layout examples. From (a) DeEx, (b) SAUS, (c) CIUS. Colors are added for annotation and not part of spreadsheets.

unsupervised
training of cell Train cell Cell Embedding Model
. - ; = F £ <E, E; > ¢ btmbecding Mode
embeddings embeddings € ™S 7 (Contextual + Stylistic)
supervised
training of - - Train - vV CellClassification
classifier classifier Model

deploying
models

Cell type
predictions

»»»

Fig. 2: Overview of our system. A training corpus of tabular
documents is used to first train cell embedding models (F),
and then to train the classification model () using the obtained
cell embedding model. For a test document, first the cell
embeddings are generated and then the classification model
is applied to predict cell types.

2 -
5 ” S 5
Cizj 2 g g g
Encoder: =» i d B £ o |-
Ci-1j Aa = 2 a
Cij2 |Cij-1 | Cij |Cije1 |Cijsz
Cisj N _
Cuizg . S| — | S| —
Decoder: — | 2 2
- -
~— et
g E 5
S — — | = —
Cojer »E 5 E
concat
Cijor »E = L— —~
[~ Et —
“C ?
- o “
Citz, —>E | g <—E<— 3
o~ S
| - Ci

Fig. 3: Contextual cell embeddings.

1) Contextual Cell Embeddings (E.): The textual value of
a tabular cell alone does not provide much information about
the cell role in the data layout. The same texts, such as “Price”
may occur in vastly different contexts (e.g. in the table title,
column header, or data cells). Therefore, an embedding based
on the cell value alone is insufficient. In order to calculate a

meaningful cell representation, the context in which tabular
cells appear should be taken into account.

Users often follow conventional rules [3] to arrange their
data in tabular documents, for example they put the headers
on top of the table, put dates in order (the header column
in 1b), and separate different parts of the document (e.g.
separate tables) by empty rows or columns. Our contextual cell
embeddings utilize such co-occurrences in tabular data, which
is predominantly organized in two-dimensional matrices.

In natural language text, important co-occurrences are de-
fined based on the surrounding words. Similarly, in tabular
data, surrounding cells contain important information and
tabular data formation is often homogeneous along tabular
rows or columns. Additionally, tabular data has a non-local
nature and important co-occurrences can be spatially diverse.
Therefore, tabular cell context includes both its surrounding
cells (local context) and some distant cells (distant context).
As an example of local cell context, consider a tabular column
with hierarchical headers, where the context of a lower level
header cell, includes the higher level header cell in the row
above. As an example of distant cell context, consider a data
cell in the middle of a table, for which the column header may
be many rows above and is part of its context. Distant context
of tabular cell is hard to identify and requires understanding of
tabular data layout (for example identifying column headers)
which is not a priori known in an unsupervised setting.

In this paper, we only use the local context of tabular
cell to train the contextual cell embedding operator. We
define the local context of a target cell as its adjacent cells
to the left, right, above and below. Based on preliminary
experiments using our development set, we achieved the best
performance with a neighborhood window size of 2, and our
system uses 8 neighboring cells in horizontal and vertical
directions. More formally we define the local context of
a target cell C;; in a tabular document D as Xc, .
Ci—2,5,Ci—1,5,Ciy1,5,Cit2,5,Ci j—2,Ci j—1,Cs j41, Ci j1a.

Fig. 3 shows an overview of our contextual cell embedding
module, which consists of two networks. The top and bottom
networks follow architectures similar to continuous bag-of-
words (CBOW), and skip-gram (SG) word embedding models
respectively [12]. The top network (E<'*) tries to predict the
value of a target cell given the value of its context cells. The
bottom network (EY) tries to predict the value of a context
cell given the value of the target cell.

In word embedding methods, a vocabulary of words is
assumed to be available during the training stage, allowing
the generation of vector representations for all words. In
our problem setting, cell values in tabular documents have a
large variety and may vary from a single number to multiple
sentences, violating this assumption. For our system to be able
to use the cell values, they need to be encoded in a latent
vector representation. In our preliminary experiments, we tried
to train an encoder for the cell values along with the context
embedding network. However, we could not achieve stable
performance with such designs, which we hypothesize may be
solved by larger training corpus. In this paper, we address this
issue by using pre-trained sentence encoding models which
have been shown to work well on short phrases, sentences, or
collection of sentences. We experimented with two popular
systems for encoding sentences and short texts, Universal
Sentence Encoder [13] and InferSent [14], to generate vec-
tor representations for cell values. InferSent showed better
performance in our preliminary experiments. InferSent is pre-
trained on English sentences, and requires pre-trained word
embeddings. We use GloVe [15] pre-trained word embeddings
in our model. It is important to note that the sentence encoding
module treats the tokens which are not in the provided word
embeddings, as unknown tokens. So, many numerical values
in the data will be treated as unknown tokens by the sentence
encoding module. Although more processing can be performed
for numerical values (such as binning the numbers) and such
methods may be useful for some domains, our preliminary ex-
periments did not show meaningful performance improvement
using such techniques. We do not consider such pre-processing
for numerical values in this paper.

To formally explain how our proposed contextual cell em-
bedding framework works, let us denote the Infersent module
as a function that gets the textual value of a cell and outputs
a d dimensional vector representation, I : S — RY, where S
is the set of all sentences. Also, let us denote the encoder and
decoder modules as, Enc® : R84 — RY | Enct : R — R,
Dec®* : RY — R? and Dect : RY — R d' is the
dimension of the hidden encoder output which we consider to
be the same for both ES** and E.. We concatenate the context
vectors and feed the resulting vector to Enc'®, causing the
dimension of the input to Enc® be 8d.

At training time, we train E<'* and E! networks separately,
and try to minimize the prediction error of each network. We
use mean square error of the network output and the desired
vector (target cell value encoding for ES* and a context
cell value encoding for E?) as prediction loss measure. More

Encoder Decoder
< -1 &
5 =) 5 = 2 5 =)]
50 < s El 4 s b5 o=
-3 EAFS IR E & »E—» B el KB L Gl F g
A F = ke A A ~ =

Fig. 4: Stylistic feature embeddings.

formally, we define the prediction loss of ES'* and E! as:
2

lctz<¢) — Z ‘I(Cz) - Decgff (Enc;t; (I(XCI))> (1)

2

I(Cj) — Decy, (Encfb4 (I(CL))) 2)

where ¢ =< ¢1, P2, ¢3,d4 > is the network parameters, and
1 is the training sample index (a cell in the training corpus).
X, is the set of local context cells for C;, and I(X;) is the
concatenation of Infersent module output for local context cell
values. Our training objective is to find the model parameters
that minimize this loss function, i.e. argming 1% (¢) +1%(¢).

During evaluation time, when dealing with a document
that the model has not seen before, we use the model
parameters we trained before and the value of target and
context cells to generate cell embeddings for the new cells,
using the output of the encoder layers in the networks.
More formally, give a tabular cell C;; and its context cells
Xc, ;» the embedding representation is: E.(C; ;, X¢, ;) =<
Egtx (Ci7j> XCi,j)? E(t:(ci,ja XCi,j) >

It is important to note that our contextual cell embedding
framework uses both skip-gram and CBoW networks in order
to utilize both the target and context cells values to calculate
a target cell vector representation. The Infersent module helps
with adding semantic information about the cell value and its
context in our cell vector representations. One other solution
is to use a cell embedding vector, similar to document or para-
graph vectors [16]. In these methods, a vector representation
for the document is calculated at test time by fixing all the
parameters of the network except the document vector, and
using gradient descent to infer a document vector using the
words it contains. We experimented with designs that used
this architecture in our preliminary experiments but were not
successful. We hypothesize such approaches may be successful
with more training data and training time.

2) Stylistic Cell Embeddings: Spreadsheets and, to some
extent, web tables are richly formatted and contain formatting,
styling, and typographic information in many cells. CSV files
contain only limited formatting and typographic features. Koci
et al. [5] introduced a large set of features for the cells in
spreadsheets, and selected 50 features that proved to be useful
in their experiments . These features include cell text features
(such as presence of capital letters, presence of numbers,
number of leading spaces), and cell styling features (such
as font size, font color, background color, border types).
These features are categorical or integers, and cannot be used
directly in our classification system. We first create an integer
representation for all the categorical features by indexing the

=i=8
=

Cell Embeddings

»

| st7m i1 | | lstmlmll/ | For cell Cij
1
o softmax
__.Ilsl myey L_’| Istmiy; l_ lgtmf’}[— E
, —~
¥ —> E —> Vi
| Iqrmfj”, | | Iqrmﬁv"j' | [Stm”’w —>
concat

v 7
Fig. 5: RNN-based classification method.

categories. This results in an integer vector representing the
cell features. In order to use these integer vectors alongside
the cell embeddings in our classification system, we need to
transform them into continuous numerical vectors. We use an
auto encoder architecture as illustrated in Figure 4 to achieve
this. The auto encoder network tries to reconstruct the input
integer vector at its output, and generates continuous vector
representations at the output of the encoder layer. We use mean
square error between the output of the decoder, and the true
integer vector as loss function for training the network. At test
time, we feed the integer vector for cell features as input and
take the stylistic embeddings (F;) from the encoder output.

B. Classifying by cell role type

Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs) have been successfully used to detect
coarse-grain elements, such as tables and charts, in tabular
documents [17]. In these works, CNNs and RNNs are used to
encode tabular documents, or part of tabular documents (e.g.
rows and columns). [18] uses RNN and CNN network for table
type classification, and [19] uses RNNs for validating target
relationships between candidate cells in tabular data as part of
their framework for knowledge base creation. However, they
do not use RNN networks for classifying the cells in tabular
documents. To the best of our knowledge, RNNs have not been
investigated for cell level classification in tabular documents.

In our classification method, we use LSTM blocks to
capture cell type dependencies in tabular documents. An
LSTM block observes a sequence of input vectors (x7...T;)
and generates a hidden output for each vector in the input
sequence (hi...hy,). It also maintains an internal state, and
for every vector in the input sequence, the hidden output
of the LSTM is a function of its state, the input vector,
and its previous output. An LSTM maintains information
about arbitrary points earlier in the sequence and is able to
capture long-term dependencies, which is especially useful
for capturing some information about the distant cell context
which our cell embedding framework does not consider. For
example a top attribute may be followed by a long sequence
of data cells in its column and it is useful for the classifier to
remember the top attribute when classifying the data cells.

Tabular formats impose cell dependencies in both its rows

and columns. To capture both of these dependencies, we
couple two LSTM networks (with different parameters), one
observing the sequence of cells in each row, and the other
observing the sequence of cells in each column. This archi-
tecture gives the LSTM blocks the ability to consider the
cells on the left and above the target cell, when generating
the output for the target cell. For example, in Figure la,
when classifying the cell B17 with value of 70,372, the
column LSTM remembers the column header (and represents
information that may be used to infer that this cell is a derived
cell because it has the word fotal in its column header), and
also the row LSTM remembers the row header. We use the cell
embeddings introduced in previous section as input vectors to
these LSTM networks.

Fig. 5 shows the overview of our cell classification frame-
work. Given a document with N rows and M columns, we first
generate embedding vectors for each cell in the document as
explained in the previous section. We then pad the document
with special vectors to distinguish borders of the document.
We use 1 for left and right padding cells, and -1 for top
and bottom padding cells. The result is a tensor (Tp) of size
(N 4+2) x (M +2) xd'. There will be N + 2 row sequences
and M + 2 column sequences for the document.

To explain how our classification framework works, let
us focus on the cell in row ¢ and column j in the tensor
we created (this corresponds to the cell in row ¢ — 1 and
column 7 —1 in the original document because of the padding
process), and call it the target cell. In order to classify the
target cell, the row LSTM network observes i’s row, and the
column LSTM network observes j’s column in Tp. Moreover,
J’s hidden output from the row LSTM (R}), and i’s output
from the column LSTM (h$) corresponds to the target cell.
We concatenate these two vectors and use a linear layer to
reduce the dimension from 2d’ to the number of cell types K.
We then use a softmax layer to calculate the probabilities for
different types for the target cell. More formally,

Shribe _

glrte = (W% h5)T + b 3)

gk s brde

e¥ii
R S

Zk v

, where y is the output of the linear layer, with size K,
pm(¢T,q§c, 0) is the k’s output of the softmax layer, ¢.,
¢, and 6 are row LSTM, column LSTM, and linear layer
parameters respectively.

We use a weighted Negative Log Likelihood as our loss
function for training the classification network. The loss func-
tion can be formally written as:

== Z weyt; 950 (5)

di ,]kl

ﬁl](ka ¢T7 d)cv 9) -

¢7")¢C

l(¢17¢27

where d; is the document index in the training corpus, i is the
row index, j is the column index, k is the index of cell type
label, wy, is the weight of label &, gf f;’qb“ is given by equation

3, and y; ; 5, 1S a one-hot vector of size K and has a 1 element
in the position of the true label for the target cell. We set wy
to be inversely proportional to the number of cells with class

an‘a,in
The training objective is to minimize the loss function, i.e.
argming, ¢, 0 (¢P1,¢2,0).

Given a new document during test time, the cell type for
each cell in the document is calculated by using equation
4, and picking the cell type with maximum probability, i.e.

argmazy, P;;(k).

type k in training corpus (ni ™), w, = 1 —

III. EMPIRICAL EVALUATION
A. Experimental Setup

1) Datasets: We evaluate our system on three real-world
spreadsheet datasets containing tables with a significant va-
riety of data layouts. The first dataset (DeEx), used in the
DeExcelerator project® contains 216 annotated Excel files from
ENRON, FUSE, and EUSES. The second dataset, used in
[4], is 2010 Statistical Abstract of the United States SAUS,
consisting of 1,369 Excel files downloaded from the U.S.
Census Bureau. The third dataset is from the Crime In the US
(CIUS) in 2007 and 2017, consisting of 1005 Excel files. We
use the annotations provided in DeEx dataset, and manually
annotate 200 and 250 Excel files, randomly selected from
each of SAUS and CIUS datasets respectively. We use the
XCellAnnotator Tool ¢ for the annotation task. XCell Annotator
provides a user interface for manually annotating cell ranges
in spreadsheets. We put each spreadsheet from these Excel
files into a single document. This leads to 457, 210, and 268
annotated documents in DeEx, SAUS, and CIUS datasets.

2) Train/test split: We randomly split the documents from
each dataset into train, validation, and test sets. Note that
Koci et al. [5] use a different method for train/test splits in
their evaluations which splits on cells rather than documents.
They use a heuristic to downsample the cells from the DeEx
dataset in order to remove the class imbalance caused by
large number of data cells compared to other types. They
then shuffle all the cells in the downsampled dataset and
generate random stratified train/test splits [S]. We believe that
splitting by document is more appropriate as it leads to testing
performance on unseen documents, where none of the cells in
the test documents have been used for training. We were able
to recreate the results in [5], using their train/test split approach
on their downsampled dataset in our preliminary experiments,
with less than 2% error.

3) Baseline Systems: We compare our system with two
baseline methods that have been proposed in previous work.
The first baseline is proposed by Koci et al. in [5] uses a
set of manually crafted cell features which cover formatting,
styling, and typographic features of tabular cells. This baseline
uses a Random Forest (RF) classifier to classify individual
cells in tabular documents. The second baseline is proposed
in [4], and also uses manually crafted formatting, styling, and

Shttps://wwwdb.inf.tu-dresden.de/research-projects/deexcelarator/
Shttps://github.com/elviskoci/XCell Annotator

typographic cell features, but uses a Conditional Random Field
(CREF) classifier for cell type classification, in order to take into
account cell type dependencies.

4) Experimental Details: In our experiments the sentence
vector dimension is d = 4096 (determined by InferSent
module). We use d’ = 200 for contextual cell embeddings
and d” = 30 for the stylistic cell embeddings. We train the
contextual and stylistic cell embeddings for 100 epochs, with
batch sizes of 200 cells, on the train set for each dataset. We
use Adam optimizer with learning rate of 0.0005 to train the
networks. We also set p = 0.1 for the dropout layers. On an
RTX 2080 GPU, training for each batch takes 10 milliseconds.
We use the validation set for early stopping while training
our proposed RNN-based cell classification network and use
Fl-macro score as the stopping criterion. We also use the
validation set for tuning the hyper-parameters of the baseline
classification methods. In our preliminary experiments mini-
batch bagging achieved better results than the downsampling
heuristic in [5], and given that it is is a more principled
approach to address class type imbalance, we use mini-batch
bagging for the RF baseline in our experiments. We also
follow the instructions in [10] to implement the CRF baseline
classifier. Since the feature set introduced by [5] is more
comprehensive and covers the features in [10], we use their
feature set for both RF and CRF baselines in our experiments.

B. Experimental Results

We investigate the performance of our proposed classifica-
tion method, and the quality of our proposed cell embeddings
in our experiments. We investigate two research questions in
our experiments. First, we investigate whether our proposed
system can achieve better performance in a given domain,
and whether our proposed cell embeddings capture useful
information. To this end, we compare the performance of our
system with the baseline systems in an in-domain training
setting. Second, we investigate if our proposed system can
be transferred to new domains with minimal user effort. To
this end, we compare our system with baseline systems in a
transfer learning scenario, where we train the models (both
cell embedding and cell classification models) on two of our
datasets and test them on the third one.

We also investigate the performance on documents that are
not richly formatted, such as CSV files. To this end, we use
a set of reduced cell features related to syntactic features of
cell values (csv features) for the baseline systems. We refer to
the complete set of cell features (which includes csv features)
as excel features. We perform the experiments in both in-
domain and cross-domain settings with csv, as well as excel
features to evaluate how much the performance of the systems
is dependent on rich styling features.

1) In-domain evaluation: In order to investigate the ability
of each system to learn data layout patterns from a dataset,
we evaluate the systems on each dataset separately. We split
the documents in each domain into 85% train, 5% validation,
and 10% test sets. We repeat this evaluation 20 times on each
dataset with different random train, validation, and test sets.

per-class F1 F1-

TA D MD B LA N Macro

RF [5] 731 | 979 | 580 | 31.1 | 443 | 265 | 552

. G CRE[I0] | 244 | 494 | 274 | 140 | 104 | 2.1 213
s RNNS 82.1 | 987 | 549 | 552 | 502 | 32.1 | 622
Al m| RFES 706 | 985 | 663 | 349 | 562 | 202 | 57.8
CUI"RNNCS | 832 | 991 | 650 | 672 | 653 | 43.1 | 705
#c 1374 | 75110 | 1503 | 386 | 306 | 227 B

RF [5] 934 | 975 | 847 | 442 [931 | 90.0 | 83.7

" 5 CRE[10] | 893 | 976 | 654 | 235 | 866 | 87.0 | 749
D RNNS 932 | 978 | 909 | 50.7 | 942 | 95.1 | 87.0
S ml RECS 80.0 | 97.5 89.0 | 479 | 943 | 922 | 85.1
O "RNNCS [951 | 98.0 | 92.6 | 62.2 | 95.0 | 959 | 89.8
#c 533 | 12667 | 50 | 486 | 1414 | & B

RF [5] 982 | 99.0 | 99.1 | 869 [942 | 99.3 [962

S CRE[10] | 818 | 979 | 931 | 732 | 8.7 | 930 | 874
z RNNS 999 | 991 | 99.2 | 834 | 97.6 | 988 | 96.3
O| @m| RFCS 998 | 992 | 989 | 859 | 97.0 | 99.0 | 96.8
CO"RNNCS [998 | 993 | 99.2 | 88.0 | 975 | 992 | 97.2
#c 379 | 19552 | 91 668 | 2048 | 81 B

TABLE I: Classification scores for the case of excel features
availability. CF and CE denote the manual cell features and
our proposed cell embeddings respectively. RNN is our pro-
posed classification method, and RF and CRF denote random
forest and conditional random field methods. #c is number of
cells in test set averaged over the 20 random splits.

per-class F1 F1-
TA D MD B LA N Macro
RF [5] 48.3 96.1 39.0 9.8 35.8 8.2 39.4
- Ej CRF [10] | 283 49.1 28.3 5.6 1.0 0.0 18.7
o RNNS 76.8 98.2 54.0 | 469 | 42.7 | 20.1 56.5
Al m RFC 38.8 96.9 63.8 | 18.1 | 442 | 18.6 46.7
O RNNC 73.5 98.6 62.7 | 488 | 56.9 | 40.8 63.6
#c 1374 | 75110 | 1503 | 386 306 227 -
RF [5] 93.0 97.4 83.5 | 24.8 | 92.8 | 89.9 80.1
- E‘j CRF [10] | 91.9 97.2 76.2 5.1 86.6 | 85.9 73.8
) RNN® 93.8 97.6 89.2 | 442 | 943 | 95.2 85.7
5) m RFC 67.2 96.1 82.0 4.4 92.3 | 88.1 71.7
O RNNC 93.5 97.9 90.5 | 48.5 | 954 | 94.7 86.7
#c 533 12667 50 486 | 1414 85 -
RF [5] 97.9 97.7 99.1 | 555 | 93.7 | 99.2 90.6
5‘5 CRF [10] | 98.0 97.8 97.7 0.8 96.2 | 96.9 81.2
z RNNS 99.0 98.6 989 | 732 | 97.3 | 99.0 94.4
Ol m RFC 96.8 98.3 972 | 57.5 | 96.7 | 97.1 90.6
O RNNC 99.6 98.8 989 | 763 | 97.2 | 98.7 94.9
#c 379 19552 9] 668 | 2048 81 -

TABLE II: Classification scores for the case of csv features.
For manual features (CF), only CSV features are used. For
CE, only the context embeddings (E.) is used.

We first perform the experiment utilizing the excel features,
i.e. we use the excel features for the baselines and use
both stylistic and contextual cell embeddings in our system.
Table I shows evaluation scores for this experiment, averaged
over 20 experiments. In order to separate the effect of our
proposed RNN-based classifier and cell embeddings, we add
two additional systems in our experiments. The first system
uses the stylistic cell embeddings and our proposed RNN-
based classifier (RNNS). The second system uses a random
forest classifier on our stylistic and contextual cell embeddings
(RF*S). Our full system, using both the RNN-based classifier
and stylistic and contextual cell embeddings is referred to as
RNN®S,

We also repeat this experiment for not richly formatted
documents, i.e. we only use the csv features for the baselines

and use only contextual cell embeddings in our full system
(RNNC). In order to use the csv features in RNNS, we encode
them with the same auto-encoder structure used for excel
features, introduced in section II-A2. The results for this
evaluation is shown in Table II.

To explain some takeaways from these tables, let us focus
on the research questions we described above.

Do our proposed contextual cell embeddings embed useful
information? To investigate this question, we compare the
Fl-macro scores when using contextual embeddings with the
cases which do not use contextual embeddings. For the case of
rich styling (Table I), random forest classifier results in better
performance using our proposed cell embeddings compared to
the cell features in all three dataset. Also, our proposed RNN-
based classifier achieves better performance when utilizing the
contetxtual cell embeddings, compared to only stylistic cell
embeddings (13% better in DeEx). When rich styling is not
available (Table II), again our RNN-based classifier performs
better when using the contextual cell embeddings compared
to stylistic embeddings created for csv features on all three
domains (12% better in DeEx dataset). In this case, random
forest classifier performs better with the cell contextual em-
beddings compared with csv features in DeEx dataset, and
performs similarly in CIUS dataset. These results show that the
contextual cell embeddings capture useful information about
the cells in tabular documents, and combining them with cell
stylistic features results in better classification performance
specially in complex datasets such as DeEx.

To further investigate this question, Figure 6 shows a 2D
visualization (obtained using the t-SNE dimension reduction
method) of contextual cell embeddings for the cells in CIUS
dataset. The 2D vectors are trained on all the cells in the
dataset, but the visualization shows 10% of data cells, ran-
domly selected. The plot shows clearly defined clusters, and
also shows the difficulty of separating data and derived cells.

How well does our proposed RNN-based classifier per-
Jorm? To investigate this question, we compare the perfor-
mance of our classifier with RF and CRF baseline classifiers.
Both RNN and CRF try to take into account the cell type
dependencies in tabular documents. In all cases in Tables I
and II, RNN performs better than RF and CRF classifiers.
When rich styling is not available (Table II), RNNS performs
43% and 200% better than RF and CRF respectively, when
using the stylistic embeddings trained on csv features in DeEx
dataset. Also, for this case RNNC performs 36% better than
RF€ when using the cell embeddings in DeEx dataset. Similar
pattern is observed in the scores for the case of rich styling
(Table I). Our proposed RNN-based classifier is especially
effective for classifying derived cells, and outperforms RF
and CRF classifiers in all cases, except for CIUS dataset
in Table I, on derived cells. Overall, the results in Tables I
and II suggests that our classifier outperforms the baseline
classification methods, and is able to learn better models,
especially in complex datasets such as DeEx.

How dependent is the classification performance on rich
styling? To answer this question, we first compare the per-

Fig. 6: 2D visualization of cell embeddings for CIUS dataset.
The numbers of TA, D, MD, B, LA, and N points in this plot
are 3813, 21210, 911, 6380, 22961, and 782 respectively.

formance of baseline systems on csv and excel features. The
scores for RF on cell features (CF) in Table I and II show
that performance of RF degrades when rich styling features
are unavailable, especially in DeEx, where F1-macro is 28%
lower. CRF performance also degrades in all three datasets.
Our RNN-based classifier suffers less when the documents
lack the styling features, with about 10% drop in Fl-macro
score. The results suggest that the performance of feature
based baselines degrades more than our system on documents
without rich styling information.

Next, we analyze performance for different cell types. Com-
paring results in Table I and Table II suggest that classification
of derived cells is difficult without rich cell styling informa-
tion. The performance of our proposed system suffer mostly
on derived cell type for all three datasets in Table II. Derived
cells are often similar to data cells, and are distinguished using
styling (e.g. being of formula cell type or being bold faced).
Classifying top attribute cells and note cells in DeEx also
depends on rich styling features. For example top attribute
cells are bold-faced in many cases and note cells are italic.

To summarize the results of this experiment, Tables I and II
suggests that our proposed contextual embeddings combined
with the RNN-based classifier results in superior cell classifi-
cation performance for in-domain training setting.

2) Cross-domain evaluation: In the in-domain evaluation
setting, we used a large set of annotated documents from each
domain. However, creating such annotated training corpus for
every new dataset needs significant user effort. In this section
we assume we have a large training corpus available from
some datasets (train datasets) which we can pre-train the
classification models on. We wish to investigate whether pre-
trained models can transfer to a new dataset (target dataset)
with minimal user effort. To this end, we use DeEx plus
one of SAUS or CIUS benchmark datasets as train datasets,
and use the other one (SAUS or CIUS) as target dataset.

Because DeEx dataset has a large diversity of data layouts
and styling compared to SAUS and CIUS datasets, we only
use it as part of train datasets. We evaluate the performance
of different systems with varying the number of annotated
training documents available from the target dataset (from 0
to 100). For each case, we report the average F1-macro scores
for repeating the evaluation 20 times, with different random
set of training documents from the target dataset.

Our proposed cell embedding and classification models can
adjust their weights iteratively using the back-propagation
algorithm. To reduce the user time and effort, we pre-train the
networks for contextual and stylistic embeddings, and RNN-
based classification on the train datasets. We then update the
model weights using the documents from the target dataset.

Our cell embedding method is unsupervised and does not
require cell annotations. We first perform back-propagation for
the pre-trained cell embeddings network on the target dataset
for 5 epochs. The back-propagation step takes 10ms per batch
of 200 cells in our experiments, so for example training on a
target dataset of 1M cells takes about 4 minutes.

We then use the new cell embedding model, along with
annotated training samples from the target dataset to run back-
propagation for 20 epochs for our pre-trained classification
network. The back-propagation step takes about 10ms on
each document, so for example if there are 100 annotated
documents, it takes 20 seconds to train the classification
model on target dataset. Therefore, transferring our pre-trained
models to a new dataset is convenient.

RF and CREF classifiers cannot adjust their models iteratively
and need to be trained at once. We do not consider CRF
classifier in this experiment since it takes long to train (we
terminated training after 2 hours, on about 600 documents),
and in our preliminary experiments, it showed very poor
performance for transfer learning scenario. We train RF mod-
els on the collection of documents from the train datasets,
and training documents from the target dataset. We give the
training documents from the target document a larger sample
weight when training the RF classsifier. Note that training the
RF models only on the train set of the target dataset resulted
in worse performance in our preliminary experiments.

Similar to the in-domain setting, we perform the experi-
ments for both when rich styling is available (excel setting)
and when it is not (csv setting). Tables III and IV shows
the experiment results for excel and csv settings respectively,
for different number of training documents from the target
domains. To explain some takeaways from these tables, let us
focus on the research questions we are investigating.

Can the classification models transfer to a new domain?
When no training documents are available from the target
dataset, the performance of all systems degrades compared
to in-domain training setting. The performance of RF baseline
degrades 45% for SAUS dataset and csv setting (Table IV).
However, in this case our proposed system (RNNC) suffers less
than the RF baseline and its performance degrades by 22%.
RNNC performs 46% better than RF baseline on SAUS dataset
for csv setting (Table IV). The performance of all systems

improves when training samples from the target dataset are
provided. Especially, the performance of RF baseline recovers
steeply, and it outperforms our system for the cases of 5
and 10 training documents on CIUS dataset. However, with
more training data from the target dataset (50 and 100), our
system outperforms the RF baseline for all cases. Overall, our
proposed RNN-based classifier achieves much better results in
transfer learning scenario where no training data is available
from a target domain, which suggests it is able to capture
patterns in the tabular data layout which can be generalized
to new datasets.

F1-Macro scores

target docs 0 1 5 10 50 100

| RF[5] 56.0 58.0 72.0 75.5 30.8 82.7

vl © RNNS 67.6 70.7 754 782 83.6 86.0
Ec) m RFC 66.0 66.9 69.6 71.6 1.1 83.6
@ O RNNCHS 64.3 70.2 75.6 78.6 83.6 385.6
#c 150183 149695 147281 142868 114612 80168

| RF[5] 63.1 643 84.7 33.0 932 94.7

vl © RNNS 712 73.6 792 815 934 95.1
5 & RFC™S 68.0 68.7 785 88.9 91.2 93.8
RNNC*S 713 738 30.4 32.8 93.6 95.7
#c 248783 248275 244401 239847 207134 160310

TABLE III: Out-domain training scores for excel setting.

F1-Macro scores

target docs 0 1 5 10 50 100

| RF 5] 440 56.0 69.7 73.0 773 793

2 U RNNS 592 | 62.0 630 | 719 | 80.8 8338
Z o RFC 49.0 51.0 545 582 67.0 69.9
| O RNNC 645 66.4 684 712 79.4 82.7
#c 150183 149695 147281 142868 114612 80168

=] RF[5] 58.0 60.0 75.9 789 85.1 87.7

w| © RNNS 664 | 711 76.1 782 | 888 | 9I5
% B REC 440 | 512 | 561 65.1 808 | 852
RNNC 67.3 71.1 75.1 779 86.7 39.8
#c 248783 248275 244401 239847 207134 160310

TABLE IV: Out-domain training scores for csv setting.

Do the contextual cell embeddings result in better model
transfer? In the in-domain results, our contextual cell em-
beddings performed well when used in a simple random
forest classifier, and also improved the performance of our
RNN-based classifier (compared to just using the stylistic
embeddings). In the out-domain setting, RF® shows poor
performance for both SAUS and CIUS when no or only a few
training documents from the target dataset are available (0,
1, 5, and 10 training documents). Our RNN-based classifier
achieves better performance when using the contextual cell
embeddings rather than the csv features in SAUS dataset when
few training documents from the target domain are available
(0 and 1 in Table IV). However, RNNC shows similar (or
slightly worse) performance compared to RNN® in other cases
in Table IV. It also achieves similar results with or without
using the contextual cell embeddings when rich styling is
available (compare RNN®*S and RNNS in Table III). This can
be justified by the fact that contextual embeddings contain
semantic information about the cell value (and value of its
local context) which is domain specific. We hypothesize that
training the contextual cell embeddings on a larger and more
diverse (from different domains) corpus of tabular documents
can improve their generalizability.

IV. RELATED WORK

There is a large amount of recent work investigating spread-
sheets and web tables for different tasks, such as data transfor-
mation, relational data extraction, and query answering. Data
transformation methods focus on transforming spreadsheets
with arbitrary data layout into more formal database tables.
These techniques often use rule based methods for the transfor-
mation. These rules are often engineered [20], [21], [22], [23],
user-provided [24], or automatically inferred [25], [26]. While
some of these techniques use semantic information of tabular
cells [25], these methods often rely on formatting, styling, and
syntactic features of tabular cells

Some previous techniques try to extract relational data from
tabular documents. [27] propose a Data Integration through
Object Modeling (DIOM) framework for spatial-temporal
spreadsheets. [4] introduce a semi-automatic approach using
an undirected graphical model to automatically infer parent-
child relationships between given cell annotations. [4], [28] use
manually crafted styling, typographic, and formatting features
to infer tabular data layout, and are similar to the baselines we
used in our experiments. More recently, Wu et al. proposed
Fonduer, a system for automatic knowledge cunstruction from
tabular documents [19]. Their technique has three phases and
uses styling, structural, and semantic information to form
relations between values in cells. They use an RNN-based
method in the last phase of their system to validate the
candidate relations. Unlike our method, they do not use the
RNN network to directly classify all the cells in the document.

Some works focus on detecting elements of the data layout
for tabular documents. [29] uses active learning and rules to
detect properties of spreadsheets, such as aggregated columns
and merged cells, and integrates an active learning framework
where users can provided rules to save human labeling effort.
Their method is tuned for special types of tables (dataframes).

There are also methods for inferring the full data layout of
tabular documents by identifying blocks of cells with the same
cell type in a tabular document. Koci et al. used formatting
and typographic features for cell classification, and uses the
classification result for layout inference. We used their method
as a baseline for our experiment [5]. They also proposed a
graph representation of spreadsheets to identify layout blocks
given imperfect cell layout type labels [30]. These cell blocks
are then used to detect tables in documents that contain
multiple tables, as proposed in [31].

V. CONCLUSION

We introduced a method to generate meaningful vector
representations for the cells in tabular documents, such as
spreadsheets, comma separated value files, and web tables.
We proposed contextual cell embeddings that capture local
contextual information for tabular cells, and also encoded
styling information in stylistic cell embeddings. We used these
cell embeddings to classify the cells in tabular documents by
their roles in the data layout of the document (cell types). To
this end, we introduced an RNN-based classification algorithm
which captures the dependencies between cells in the rows

as well as columns in tabular documents. We evaluated the
performance of our system on three datasets from different
domains (financial, business, crime, agricultural, and health-
care) in two evaluation settings, in-domain and cross-domain.
We compared the performance of our system with two baseline
systems which use manually crafted styling, formatting, and
typographic features for cell type classification.

Our in-domain evaluation results suggested that our pro-
posed contextual cell embeddings capture meaningful informa-
tion about tabular cells, and utilizing them along with stylistic
cell embeddings results in better cell type classification than
baseline methods, especially for datasets containing documents
with heterogeneous data layouts and styling conventions. Our
evaluations also showed that the baseline methods are very
dependent on rich styling information and perform poorly on
documents which do not contain this information, such as
CSV files. For such documents, using our proposed contextual
cell embeddings results in better classification performance.
Our cross-domain evaluations suggest that our RNN-based
classifier is able to capture more general patterns in data layout
of tabular documents, and transfers better than the baselines
to new unseen domains with minimal user effort.

Our proposed contextual cell embeddings combined with
RNN-based classifier has the potential to learn complex pat-
terns in tabular data layouts and there is room for further
investigation of its capabilities in future work. We hypothesize
that training the contextual cell embeddings on larger and more
diverse (from different domains) data can result in capturing
more domain agnostic regularities in tabular data layout.

REFERENCES

[1] P. Wright and K. Fox, “Presenting information in tables,” Applied
Ergonomics, vol. 1, no. 4, pp. 234-242, 1970.

[2] E. Crestan and P. Pantel, “Web-scale table census and classification,” in
Proceedings of the fourth ACM international conference on Web search
and data mining. ACM, 2011, pp. 545-554.

[3] X. Wang, “Tabular abstraction, editing, and formatting,” Ph.D. disserta-
tion, University of Waterloo, 1996.

[4] Z. Chen and M. Cafarella, “Integrating spreadsheet data via accurate
and low-effort extraction,” in Proceedings of the 20th ACM SIGKDD.
ACM, 2014, pp. 1126-1135.

[5]1 E. Koci, M. Thiele, O. Romero Moral, and W. Lehner, “A machine
learning approach for layout inference in spreadsheets,” in IC3K 2016:
Proceedings of the 8th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management: vol-
ume 1: KDIR. SciTePress, 2016, pp. 77-88.

[6] G.Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” arXiv preprint
arXiv:1603.01360, 2016.

[7]1 Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[8] M. Neishi, J. Sakuma, S. Tohda, S. Ishiwatari, N. Yoshinaga, and
M. Toyoda, “A bag of useful tricks for practical neural machine transla-
tion: Embedding layer initialization and large batch size,” in Proceedings
of the 4th Workshop on Asian Translation (WAT2017), 2017, pp. 99-109.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv

preprint arXiv:1810.04805, 2018.

Z. Chen and M. Cafarella, “Automatic web spreadsheet data extraction,”

in Proceedings of the 3rd International Workshop on Semantic Search

over the Web. ACM, 2013, p. 1.

M. D. Adelfio and H. Samet, “Schema extraction for tabular data on the

web,” Proceedings of the VLDB Endowment, vol. 6, no. 6, pp. 421432,

2013.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[31]

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John,
N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar et al., “Universal
sentence encoder,” arXiv preprint arXiv:1803.11175, 2018.

A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes,
“Supervised learning of universal sentence representations from natural
language inference data,” arXiv preprint arXiv:1705.02364, 2017.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532-1543.

Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International Conference on Machine Learning, 2014,
pp. 1188-1196.

P. Azunre, C. Corcoran, N. Dhamani, J. Gleason, G. Honke, D. Sullivan,
R. Ruppel, S. Verma, and J. Morgan, “Semantic classification of tab-
ular datasets via character-level convolutional neural networks,” arXiv
preprint arXiv:1901.08456, 2019.

K. Nishida, K. Sadamitsu, R. Higashinaka, and Y. Matsuo, “Understand-
ing the semantic structures of tables with a hybrid deep neural network
architecture.” in AAAI 2017, pp. 168-174.

S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas, P. Levis, and
C. Ré, “Fonduer: Knowledge base construction from richly formatted
data,” in Proceedings of the 2018 International Conference on Manage-
ment of Data. ACM, 2018, pp. 1301-1316.

J. Cunha, J. Saraiva, and J. Visser, “From spreadsheets to relational
databases and back,” in Proceedings of the 2009 ACM SIGPLAN
workshop on Partial evaluation and program manipulation. ~ACM,
2009, pp. 179-188.

A. O. Shigarov, V. V. Paramonov, P. V. Belykh, and A. 1. Bondarev,
“Rule-based canonicalization of arbitrary tables in spreadsheets,” in
International Conference on Information and Software Technologies.
Springer, 2016, pp. 78-91.

A. O. Shigarov, “Table understanding using a rule engine,” Expert
Systems with Applications, vol. 42, no. 2, pp. 929-937, 2015.

H. Su, Y. Li, X. Wang, G. Hao, Y. Lai, and W. Wang, “Transforming a
nonstandard table into formalized tables,” in Web Information Systems
and Applications Conference, 2017 14th. 1EEE, 2017, pp. 311-316.
S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive
visual specification of data transformation scripts,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
2011, pp. 3363-3372.

W. Dou, S. Han, L. Xu, D. Zhang, and J. Wei, “Expandable group
identification in spreadsheets,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 498-508.

R. Abraham and M. Erwig, “Inferring templates from spreadsheets,” in
Proceedings of the 28th international conference on Software engineer-
ing. ACM, 2006, pp. 182-191.

R. Ahsan, R. Neamtu, and E. Rundensteiner, “Towards spreadsheet inte-
gration using entity identification driven by a spatial-temporal model,” in
Proceedings of the 31st Annual ACM Symposium on Applied Computing.
ACM, 2016, pp. 1083-1085.

J. Eberius, C. Werner, M. Thiele, K. Braunschweig, L. Dannecker, and
W. Lehner, “Deexcelerator: a framework for extracting relational data
from partially structured documents,” in Proceedings of the 22nd ACM
international conference on Information & Knowledge Management.
ACM, 2013, pp. 2477-2480.

Z. Chen, S. Dadiomov, R. Wesley, G. Xiao, D. Cory, M. Cafarella,
and J. Mackinlay, “Spreadsheet property detection with rule-assisted
active learning,” in Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management. ACM, 2017, pp. 999-1008.
E. Koci, M. Thiele, W. Lehner, and O. Romero, “Table recognition in
spreadsheets via a graph representation,” in 2018 13th IAPR Interna-
tional Workshop on Document Analysis Systems (DAS). 1EEE, 2018,
pp. 139-144.

E. Koci, M. Thiele, O. Romero, and W. Lehner, “Cell classification for
layout recognition in spreadsheets,” in International Joint Conference
on Knowledge Discovery, Knowledge Engineering, and Knowledge
Management. Springer, 2016, pp. 78-100.

