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1. INTRODUCTION
Competitor relationships are integral to many important

financial applications. Example use cases include under-
standing regulatory impacts, investing in new business ar-
eas, and building economic models. Competitor relation-
ships can be defined based on several aspects, including val-
uations and asset returns, industrial processes, or offerings
of products and services. Determining these relationships
is often challenging due to the diverse and complex inter-
actions between companies which must be mined from vast
datasets with varying degrees of credibility. In this paper,
we approach this problem by constructing a hybrid knowl-
edge graph capturing financial relationships and applying a
link prediction model to identify missing competitor rela-
tionships.

Knowledge graphs are a popular knowledge representation
choice for capturing entities and the relationships between
them. Knowledge graph construction typically uses only a
single type of input data, such as relationships mined from
text using information extraction techniques or curated re-
lationships from relational databases. In contrast, for the
FEIII Challenge1, we are provided with several sources of
relationships from different types of input, including ex-
pert judgments, mined relationships, and statistical features.
Our approach creates a hybrid knowledge graph that in-
cludes relationships derived from three very different types
of data in a single knowledge graph.

We construct a hybrid knowledge graph using data pro-
vided for the FEIII Challenge and one additional source,
the webpages of companies included in the challenge. The
first data source we use are expert judgments curated by
the Thomson Reuters Data Fusion (TRDF) platform2. The
second data source we are provided in the challenge are re-
lationships extracted from text found in SEC filings. Fi-
nally, we introduce a third set of statistical signals, derived
primarily from collecting webpages of the companies in the

1http://dsmmworkshop.org/
2https://developers.thomsonreuters.com/data-fusion
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knowledge graph and applying natural language processing
(NLP) tools to the text of the webpages.

After constructing a hybrid knowledge graph, we develop
a link prediction model to predict competitor relationships
missing from the knowledge graph. Our model captures de-
pendencies between different relationships in the knowledge
graph, supports collective inference of all competitor rela-
tionships simultaneously, and is capable of combining di-
verse signals as part of the predictive process. Our model
uses probabilistic soft logic (PSL), a modeling framework
that supports efficient, collective inference and expressive
specification of rules using a first-order logic syntax.

To understand the value of different signals in the FEIII
Challenge dataset, we perform an ablation study to deter-
mine the value of each type of input. We find that while
expert and mined relationships provide high-precision rela-
tionships, recall is extremely low. In contrast, statistical
signals provide a similar level of precision with substantially
higher recall. Overall, our approach yields an F1 score of
0.74 in a cross-validated experiment on the challenge train-
ing data and achieves an F1 score 0.15 on the challenge task.

2. RELATED WORK
Competition has been a longstanding area of interest in

economic and financial research Hotelling [1929], Chamber-
lin [1933]. Approaches to predicting competition have used
industry classifications Pearce [1957], financial results Fama
and French [1997], Bhojraj and Lee [2002], product offer-
ings Rauh and Sufi [2011], and textual analysis of company
documents Hoberg and Philips [2016]. Our knowledge fusion
approach can benefit from all of these disparate approaches,
combining these signals in a single model.

Knowledge graphs and knowledge base construction have
long been seen as a critical approach for capturing and or-
ganizing useful knowledge Lenat et al. [1990], Dong et al.
[2014], Nickel et al. [2015], Carlson et al. [2010], Bollacker
et al. [2008]. Prior work Pujara et al. [2013] has demon-
strated that collective models, such as PSL Bach et al. [2017],
provide superior performance on cleaning and completing
knowledge graphs. We adopt this approach and apply it to
financial datasets.

3. APPROACH
We model the FEIII Challenge data using a hybrid knowl-

edge graph. We process the raw data provided in the chal-
lenge, and identify several types of relationships from each
data source. We refer to relationships from the TRDF plat-
form as Expert data, relationships from text extracted fromDOI: 10.1145/3220547.3220559



Source Relationships

Expert Same, Competitor, Joint Venture
Strategic Alliance, Supplier, Industry

Mined Competitor, Competitive, Compete,
Competing, Trustee, Agent, Control,
Affiliate, Parent, Issuer

Statistical Webpage Similar, TNIC

Table 1: Expert, Mined, and Statistical Relation-
ships used in our model

SEC filings as Mined data, and relationships found using
statistical techniques (including TNIC) as Statistical data.
Table 1 contains a list of these relationships used in our
model.

After identifying relationships in the knowledge graph, we
define a PSL model for using these relationships. The PSL
model consists of a series of rules that specify interdepen-
dencies between relationships in the knowledge graph. In
our model, we are interested in predicting the Competitor
relationship using information from expert, mined, and sta-
tistical features. After assembling these rules, the weight, or
importance, of each rule is learned using training data.

Expert Rules.
Rules based on expert data exploit several relationship

patterns. One pattern is that if two identifiers refer to the
same company, the identifiers do not define a competitive
relationships, and all competitors are shared between these
two identifiers. Another pattern is that if two companies
share a common supplier, they are likely to be competitors.
A third type of pattern is that if two companies have a joint
venture (or strategic alliance, or supplier relationship) they
are unlikely to compete. Finally, if two companies operate
in the same industry, they are likely to compete. A sample
of these rules are listed below:

TRDFSame(C1, C2) ∧ Competitor(C1, T)

→ Competitor(C2, T)

TRDFSame(C1, C2) → ¬Competitor(C1, C2)

TRDFCompetitor(C1, C2) → Competitor(C1, C2)

TRDFSupplier(S, C1) ∧ TRDFSupplier(S, C2)

→ Competitor(C1, C2)

TRDFJV(C1, C2) → ¬Competitor(C2, C2)

TRDFIndustry(C1, I) ∧ TRDFIndustry(C2, I)

→ Competitor(C1, C2)

Mined Rules.
The second type of rule we introduce uses relationships

mined from SEC filings on the basis of keywords identified
by domain experts. In some cases there are multiple key-
words surrounding the same concept (such as “competitor”,
“compete”, and“competing”) which may have differing preci-
sion and are associated with different rules to capture these
potential differences. The first rules capture these differ-
ent indicators of competition. Other relationships, such as
trustee (or agent) may be negatively correlated with compe-
tition. When companies share a common parent (or control-

ling entity), they may also be less likely to be competitors.
However, sharing other types of relationships, such as com-
petitors, agents, affiliates, issuers, or trustees, may increase
the probability of a competitive relationship. We encapsu-
late these types of patterns in the sample rules provided
below:

SECCompetitor(C1, C2) → Competitor(C1, C2)

SECCompete(C1, C2) → Competitor(C1, C2)

SECTrustee(C1, C2) → ¬Competitor(C!, C2)

SECParent(C1, P) ∧ SECParent(C2, P)

→ ¬Competitor(C1, C2)

SECAffiliate(C1, A) ∧ SECAffiliate(C2, A)

→ Competitor(C1, C2)

SECCompetitor(C1, C) ∧ SECCompetitor(C2, C)

→ Competitor(C1, C2)

Statistical Rules.
The last type of rule we introduce uses relationships mined

from statistical patterns and NLP tools. One statistical sig-
nal is a competition probability derived from the similarity
of SEC filings, which is provided by the TNIC resources. An-
other similarity score was derived by retrieving the webpage
of each company, performing a set of standard normaliza-
tions to remove stopwords and identify salient terms, and
computing a statistical similarity between webpages. We
experiment with several normalization techniques for com-
puting these similarities and include all of them as sepa-
rate rules. Finally, we encoded transitivity and common-
competitor relationships, so that competitor relationships
are propagated and competitive cliques are completed. We
list the sample rules based on these signals below:

TNICCompetitor(C1, C2) → Competitor(C1, C2)

WebpageSimilar(C1, C2) → Competitor(C1, C2)

Competitor(C1, C) ∧ Competitor(C, C2)

→ Competitor(C1, C2)

Competitor(C1, C) ∧ Competitor(C2, C)

→ Competitor(C1, C2)

Standard Rules.
Three standard rules are included in the model. The first

is a prior rule which states that, in the absence of other ev-
idence, no two companies are competitors. The second rule
enforces the constraint that a company does not compete
against itself. The last rule forces competitor relationships
to be symmetric. are likely to compete. A sample of these
rules are listed below:

→ ¬Competitor(C1, C2)

→ ¬Competitor(C, C)

Competitor(C1, C2) → Competitor(C2, C1)

In the next section, we show the power of each of these sets of
rules individually, as well as investigating how performance



changes as different signals are combined in the model.

4. EVALUATION
To evaluate our approach, we used the labeled training

data provided as part of the FEIII Challenge. The scripts
used for data preparation and testing are publicly avail-
able at https://github.com/puuj/pujara-dsmm18. We used
the competitor relationships reported by TRDF (in TRDF
edges) as the ground truth. To perform a meaningful cross-
validation, we represented these ground truth relationships
as a graph, and used the METIS package Karypis and Ku-
mar [2009] to perform a minimum-weighted equal vertex
edge-cut to produce five connected components. This pro-
cedure minimized the overlap of information across different
validation folds. We created five separate validation folds
using this graph partitioning output. In our cross-validated
experiments, we conditioned on three folds of data, used one
fold as the training targets and supervision, and held out the
last fold of data for evaluation.

We evaluated each of the three models (Expert, Mined,
Statistical) separately, considered three variants where two
of the three signals were used, and a model combining all
of the data sources. In the interest of time, we only learn
rule weights from training data when using the combined
model containing all of the rules. We compare to a baseline
that predicts all competitor edges as true, maximizing recall
at the expense of precision. We report precision, recall, F1
score, and area under the precision-recall curve in Table 4.

We observe that the baseline method has low precision,
since most company pairs are not competitors. Using the
expert knowledge in the TRDF resources results in high
precision (0.78) but low recall (0.03), which is expected in
a manually-curated resource. The mined rules have much
lower precision (0.56) and even lower recall (0.01) highlight-
ing the difficulty of mining high-precision relationships using
only keywords and a limited textual corpus. Statistical sig-
nals have an advantage with precision approach that of the
expert rules (0.77) and much higher recall (0.68). In our ex-
periments, combining different combinations of signals failed
to improve the results of either model alone, possibly be-
cause the training data and procedure were not sufficient to
balance the input features in these cases. When combining
all of the rules, we find that the training procedure does
help with knowledge fusion by retaining the high precision
of the best models, boosting the recall, and improving the
F1 and AUC. Surprisingly, applying this trained model on
the FEIII challenge test data produced significantly worse
results, with an F1 of 0.16 and an AUC of 0.09. This sug-
gests that the training data, patterns, and graph structure
between these two datasets may differ substantially.

5. CONCLUSION
In this paper, we develop a system for combining diverse

data sources, such as expert knowledge, keyword-based in-
formation extraction, and statistical predictions, in a single,
hybrid knowledge graph We introduce a model for identify-
ing missing competitor relationships in this hybrid knowl-
edge graph, and show how different data sources contribute
to the model, finding that statistical signals offer high pre-
cision and coverage, and are an important component for
predicting competitor relationships. A surprising result was
that applying a model with strong performance on the FEIII

Method Prec. Recall F1 AUC

Baseline 0.06 1.00 0.10 0.06
Expert 0.78 0.03 0.05 0.39
Mined 0.56 0.01 0.02 0.36

Statistical 0.77 0.68 0.72 0.83
E + M 0.63 0.02 0.04 0.38
E + S 0.73 0.60 0.62 0.81
M + S 0.77 0.68 0.72 0.83

All 0.77 0.72 0.74 0.81

Challenge 0.16 0.17 0.16 0.09

Table 2: Results for single-source and two-source
models, as well as a combined model. All results ex-
cept the challenge results are averaged from a 5-fold
cross-validated experiment. Expert rules have the
best precision, while statistical rules demonstrate
high recall without sacrificing precision. Combining
all models improves the recall and F1 score.

challenge training data on the challenge problem resulted in
far lower performance. Generalizing the competitor model
across datasets and incorporating new rules and types of
signals remain areas of open research and future work.
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