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Abstract

Reducing household energy usage is a priority for
improving the resiliency and stability of the power
grid and decreasing the negative impact of en-
ergy consumption on the environment and public
health. Relevant and timely feedback about the
power consumption of specific appliances can help
household residents reduce their energy demand.
Given only a total energy reading, such as that col-
lected from a residential meter, energy disaggrega-
tion strives to discover the consumption of individ-
ual appliances. Existing disaggregation algorithms
are computationally inefficient and rely heavily
on high-resolution ground truth data. We intro-
duce a probabilistic framework which infers the en-
ergy consumption of individual appliances using a
hinge-loss Markov random field (HL-MRF), which
admits highly scalable inference. To further en-
hance efficiency, we introduce a temporal represen-
tation which leverages state duration. We also ex-
plore how contextual information impacts solution
quality with low-resolution data. Our framework is
flexible in its ability to incorporate additional con-
straints; by constraining appliance usage with con-
text and duration we can better disambiguate ap-
pliances with similar energy consumption profiles.
We demonstrate the effectiveness of our framework
on two public real-world datasets, reducing the er-
ror relative to a previous state-of-the-art method by
as much as 50%.

1 Introduction

Households consume over one third of all electricity in the
United States [Energy Information Administration, 2016],
and opportunities for decreasing this share abound [Dietz
et al., 2009]. However, these opportunities are impeded
by the lack of information available to residential con-
sumers. Consumers are often uninformed as to which ap-
pliances consume the most energy [Gardner and Stern, 2008;
Attari et al., 2010], and which actions have the greatest sav-
ings potential. Furthermore, there is growing evidence that
detailed feedback about energy use can reduce consump-
tion [Brandon and Lewis, 1999; Stern, 1989; Darby, 2006;

Van Houwelingen and Van Raaij, 1989]. Currently, this re-
duction is hampered by the fact that residents receive only
aggregate energy information. As a simple analogy, consider
receiving a shopping bill with a single figure and being asked
to spend less on the next shopping trip. Based on this infor-
mation alone, it would be difficult to discern how to adjust
purchasing habits.

Advanced Metering Infrastructure (AMI), such as smart
meters, measure aggregate energy consumption at defined
intervals and transmit measurements wirelessly. Smart me-
ters offer a unique opportunity to gather real-time data, learn
energy consumption patterns, and ultimately offer action-
able insights to consumers. Energy disaggregation (also re-
ferred to as non-intrusive load monitoring (NILM)) is the
process of determining the energy consumption of individ-
ual appliances, given only an aggregated energy reading. A
successful disaggregation algorithm can give consumers an
itemized energy bill, displaying how much energy is con-
sumed by each appliance, rather than the aggregate monthly
reading they currently receive. While there are existing
approaches to this problem [Kelly and Knottenbelt, 2015;
Lange and Bergés, 2016; Parson et al., 2012], none have been
deployed in a real-world setting with low-frequency smart-
meter readings.

Here, we propose a probabilistic energy disaggregation
framework which determines the most likely collection of ap-
pliances that are in use. Our framework uses (soft) constraints
and context to disambiguate between similar appliances. By
introducing appliance sets we can infer appliance states col-
lectively, allowing us to benefit from the inherent structure in
this problem. We also introduce a representation for energy
readings which encodes state duration directly. To formu-
late the inference task we use a hinge-loss Markov random
field (HL-MRF) [Bach et al., 20151, which allows a flexible
probabilistic formulation and admits efficient inference. We
evaluate our proposed framework on two real-world data sets.
Empirical results demonstrate that our proposed probabilistic
model significantly outperforms existing state-of-the-art tech-
niques. In addition to our novel probabilistic formulation, we
show the effectiveness of our proposed interval representation
and the benefit of jointly modeling appliance states. Finally,
we catalog several situations where contextual information is
helpful for disambiguating active appliances.



2 Related Work

Hart’s seminal paper [Hart, 1992] on non-intrusive load mon-
itoring (NILM) introduced the problem of energy disaggre-
gation. Broadly, there are two classes of solutions, those that
require additional hardware and those that do not. Here we
review only those approaches which do not require any addi-
tional equipment installation and thus are truly non-intrusive.

While alternative approaches exist [Kelly and Knottenbelt,
2015; Lange and Bergés, 2016], factorial hidden Markov
models (FHMM)s [Ghahramani and Jordan, 1997] and vari-
ants thereof, have been a popular choice for disaggregation
algorithms [Kolter and Jaakkola, 2012; Kim et al, 2011;
Parson et al., 2012; Johnson and Willsky, 2013]. In this set-
ting each appliance is represented with a single HMM, where
the discrete hidden state variables correspond to the state of
the appliance, and the observed continuous random variables
correspond to the power readings. FHMMs allow multiple
HMMs to be joined through a single observed variable in such
a way that approximate inference is tractable. However, as the
inference is approximate, it is not optimal, a shortcoming ad-
dressed by a number of recent papers [Makonin et al., 2015;
Shaloudegi et al., 2016].

Our method is similar in spirit to the FHMM line of work as
we also employ a structured probabilistic framework. How-
ever our HL-MREF structure is more flexible and can model
a host of constraints without being restricted by the genera-
tive assumptions of an FHMM. Furthermore, we build on the
work of Kim et al. [2011] and Li and Zha [2016], by in-
tegrating non-traditional context features. Like Shaloudegi et
al. [2016], our approach exploits state-of-the-art optimization
techniques such as ADMM [Boyd e al., 2011], however our
approach ends up being significantly more scalable, taking
just a few minutes on homes from the REDD dataset versus
over an hour for ADMM-RR.

3 Problem Definition

A disaggregation algorithm, r — A, produces a mapping from
a sequence of energy readings, r, to a corresponding sequence
of appliance states, A. In the problem setting we consider,
we define a sequence of n energy readings, r = (Ri,..., Rx).
In addition, we are provided with a set of m appliances,
A={a,...,a,}. Each appliance q; is associated with a set of
k; possible states. The number of states varies by appliance,
some may have two states (on, off), while others may have
multiple modes (off, low, medium, high). For each appliance
state, we denote the energy consumed by appliance 7 in state
k as c¥. We introduce an indicator a; ; that specifies that ap-
pliance i is in state s during reading j and define A as a matrix
of these indicators. Each column is a vector of indicators cor-
responding to a particular reading, such that the j** column
has the form {a}';,....a}*!, ... all ... apfm ).

Using this model formalization, we introduce a probabilis-
tic formulation for the disaggregation problem. We introduce
a binary random variable y; ; corresponding to each indicator
variable, af ;. The variable y; ; takes value 1 when appliance
a; is in state s during reading j, and 0 otherwise. The goal of
disaggregation is to estimate the probability, P(y; ;), of each
possible appliance state for each reading in the sequence,

and determine the most probable state for each appliance,

ys, = argmax P(y; ). This probability estimate should obey
se{l...k;}

the constraint that expected consumption equals the measured
usage in the reading, or R; = Y27 | c5ys .

Frequently, the task of estimating these probabilities is un-
der constrained, such that many potential configurations of
appliance states may yield the same observed energy con-
sumption. Thus, disaggregation algorithms can improve iden-
tifiability by modeling the joint probability distribution over
all appliance states for reading j, P(Y;). Many possible prob-
abilistic models can be used to characterize this probability
distribution. One common example is using previous appli-
ance states to model current appliance states, e.g. estimating
the conditional probability P(Y;|Y;_:). In the next section, we
discuss how to build a robust probabilistic model of appliance
states.

4 Modeling Approach

We propose a flexible framework which can disaggregate
individual appliances from aggregate power readings. The
framework is designed with real-world applicability as the
end goal; it can adapt to multiple categories of information
and is able to disaggregate even with coarse power readings.
One of the framework’s central goals is disambiguating be-
tween appliances which have similar power demands, but are
used in different contexts for differing lengths of time. We
introduce two conceptual representations: appliance sets and
an interval temporal formulation.

4.1 Appliance Sets

Rather than predict the states of appliances independently,
our model captures a joint configuration of appliances that
we refer to as an appliance set. The energy consumption of
an appliance set can easily be determined by aggregating the
energy usage of each appliance. By grouping appliances to-
gether we are able to reason jointly about the relative likeli-
hood of sets rather than individual appliances, for example,
a heater and an air conditioner is an unlikely pair, while an
air conditioner and pool pump is not. Here we only infer the
states of those sets which are within a reasonable distance to
the observed total power. Thus the input of target appliances
to be disaggregated can be split into J unique subsets, corre-
sponding to collections of feasible appliances. Then for any
reading R, there is a single set S; such that all appliances in
S; are on at time ¢.

4.2 Interval Representation

In addition to modeling appliance sets, we also explore ag-
gregating several instantaneous readings into an interval rep-
resentation. If two consecutive readings are similar, it is likely
that they correspond to the same appliance set. In this case,
inferring the most likely appliance set for an interval rather
than for each individual reading in the interval can improve
the efficiency as well as the accuracy of the model. To define
intervals, we coalesce readings where total power has only
minimal fluctuations. When the difference in consumption
of two consecutive readings exceeds a threshold §, our model
establishes a new interval. The sequence of power readings is



now indexed by intervals instead of time, so that we have V
intervals to disaggregate, rather than N readings, (R, ..., Rv),
where V<« N.

5 Probabilistic Disaggregation Framework

Our framework integrates diverse sources of information into
a joint probability distribution over active appliance sets. We
model this probability distribution as a hinge-loss Markov
random field (HL-MRF)[Bach et al., 2015]. Finding the most
probable appliance set for each reading corresponds to maxi-
mum a-posteriori (MAP) inference in the HL-MRF.

To specify an HL-MRF, we use the templating language
Probabilistic Soft Logic (PSL). PSL has been successfully
deployed in a diverse range of settings, from recommender
systems [Kouki er al., 2015] to stance prediction in online fo-
rums [Sridhar ef al., 2015]. PSL models are specified through
weighted logical rules which capture dependencies between
variables. Combining the PSL model with input data defines
an HL-MRF.

Rules in PSL are expressed in first-order logic and associ-
ated with a weight, for example:

w, : ActivelnSet(4;, S;) A AppSet(R;, S;) — IsOn(R;, A;).
Here the rule has weight w, and predicates: AppSet, IsOn,
and ActivelnSet capture the relationships between the vari-
ables: A;,S;, and R;. A predicate and its arguments (either
variables or constants), constitute an atom. Atoms in PSL
rules have a truth value in the continuous interval [0, 1], allow-
ing a relaxation of Boolean logic.

We outline the rules which define our model, and in Section
5.6 we describe how these rules are used to define a HL-MRF
which captures the probabilistic dependencies and constraints
in our domain.

5.1 Energy Disaggregation Template

We introduce several logical predicates to capture impor-
tant elements of our model. Here we consider two ap-
pliance states, on and off, however the extension to addi-
tional states is straightforward. We capture that appliance
i is on during reading ! via the atom IsOn(R;, A;). We de-
fine a mapping between appliances and appliance sets using
ActivelnSet(A4,, S;), which is true when appliance i is active
in set j. To capture if the appliance set j is active during
reading {, we use the atom AppSet(R;, S;), where only one
appliance set can be active at a time. In our model we con-
sider all appliance sets, however, in practice we restrict the
number of feasible appliance sets considered for any reading
as explained in Section 6.1. Accordingly, we introduce the
following constraint:

J
> " AppSet(R;, S;) = 1.0.
j=1

5.2 Interval Duration

Appliance usage often follows consistent patterns, and un-
derstanding the length of time an appliance spends in each
particular state provides a powerful disambiguating signal. In
our model, we define the discrete duration classes: very short,

short, medium, and long. The length of each duration is esti-
mated from data and differs for each dataset, but for example,
a very short duration is less than 4 minutes, while a long du-
ration would be more than 19 minutes. Duration classes were
found from quartiles of all appliance durations in the training
data, for example the threshold under which a duration would
be labeled very short was the 25% percentile of all appliance
on-state durations.

Using the atom Duration(R;, length(R,;)), we can specify the
duration of interval R,. We can then learn a duration-specific
prior for each appliance:

Wawr : DUration(Ry, length(R;)) — =IsOn(R;, A;).
These learned priors can capture patterns such as microwaves

rarely being on for long durations and dishwashers rarely be-
ing on for very short durations.

5.3 Observed Consumption

The difference between an appliance set’s consumption and
the observed power reading is modeled with the atom
CloseToConsumption(R;, S;). Let the expected consumption
of S;,be E; = Ziesj wi, reading(R;), be the value of reading
R, in watts. Then, CloseToConsumption(R;, S;) equals,

. ( [reading(R;) — E;| >
1 —min (1, > .
max(E;, reading(R;))
The weighted rule below expresses that the truth value of
an appliance set depends on its distance to consumption.

w, : CloseToConsumption(R;, S) — AppSet(R;, S)

To express the relationship between appliances and appliance
sets we introduce the predicate ActivelnSet(A;, S;), which is
1 if A, is active in S;, and O otherwise. Thus to propagate
information about appliances to appliance sets, and vice versa
we use two rules:

Wapp : ActivelnSet(A;, S;) A AppSet(R;, S;) — IsOn(R;, A;)
was : ActivelnSet(A;, S;) A =IsOn(R;, A;) — -AppSet(R;, S;)

5.4 Capturing State Changes

One expectation of energy readings is that changes in ob-
served energy usage correspond to a single appliance chang-
ing state, rather than a significant change in the active ap-
pliances. Implementing this intuition using appliance sets
requires capturing the relationships between appliance sets
more directly.

We specify the difference between two consecutive read-
ings using the atom, Diff(R,, R.,D), and apply a threshold
D > ¢ to generate only meaningful differences. We intro-
duce the predicate Positive for differences greater than 0,
and the atom CloseToDiff(A, D) to capture the distance be-
tween the energy consumption of appliance A and the ob-
served difference D. Finally Toggle states that the difference
between two appliances sets is exactly appliance A, that is
(S1US2)\ (S1NS2) = A. We then put these into two final rules:

Wion : DIff(R1, Rz, D) A Precedes(Ri, Rs)
A CloseToDiff(A, D) A —IsOn(R,, A) A Positive(D)
A Toggle(S:, Sz, A) A AppSet(R., S:) — AppSet(R:, S»)



Diff(R,, R,, D) A Precedes(R,, R2)
A CloseToDiff(A, D) AIsOn(R;, A) A —Positive(D)
A Toggle(S:, Sz, A) A AppSet(R., S2) — AppSet(Rs, S1)
Additionally we create a set of rules to capture the persis-
tence of an appliance being on. To do so we use a predicate
Precedes(R;, R;), which is true if index value 4, directly pre-
cedes index value j, or i = j — 1. The following rules allow us
to express the probability that an appliance contributes to R,
it will contribute to R; ;.
Wstayyn : ISON(Ry, X) A Precedes(R;, Ri11) — IsOn(R;4 1, A;)
Wewrng 75 : ISON(Ry, X) A Precedes(R;, Riy1) — —IsOn(R;.1, A;)
Wewrngn : ~1SON(R;, X) A Precedes(R;, Ri11) — IsOn(R;1, Ai)1)
Wetayy f7 * ~ISON(Ry, X) A Precedes(R;, Ri11) — —IsOn(R; .1, A;)

5.5 Contextual Rules

Contextual rules are designed to capture the context in which
a resident uses a given appliance. By developing a rich sense
of context we reduce reliance on ground truth data, and in-
troduce information which reduces the variance across appli-
ances. Here we introduce two types of contextual informa-
tion, temporal and temperature.

Wioff -

Temporal Rules

Appliance usage often depends on the time of day, and day of
the week. For example, it is more likely that a cooking appli-
ance, such as a microwave, will be used in the evening, than
in the middle of the night. Thus we introduce two predicates
which state the hour and day of the week at which a read-
ing occurred: Hour(R;, H) and DayOfWeek(R;, D), where
H € {0,23} and D € {Sunday...Monday}. We then learn the
relationships between hour, day of the week, and appliance.

Waay : DayOfWeek(R,, D) — IsOn(R;, A;)
Whour : HOUr(Ry, H) — ISONn(R;, A;)

Temperature Rules

We also model the relationship between temperature and ap-
pliance usage. Such a relationship should be particularly
strong with heating and cooling appliances such as an air
conditioner. To incorporate temperature into the model we
introduce the predicate Temperature(R;, Temp), where Temp
is either cold, mild or hot. Thus we relate appliances to tem-
perature with the following rule:

Weemp ¢ Temperature(R;, Temp) — IsOn(R;, A;)

This concludes our overview of the energy disaggregation
rules, we now explain how these rules can define a HL-MRF.

5.6 From Disaggregation Templates to HL-MRFs

HL-MRFS are a general class of conditional, continuous
probabilistic models, parametrized with a set of weighted
hinge-loss functions. Hinge-loss functions can model a rich
diversity of relationships, and critically, admit highly scalable
inference. We now specify how a HL-MREF is defined from
a set of weighted logical rules, such as those defined in the
probabilistic disaggregation framework. Let us now turn to
an example rule from the previous section:

X : ActivelnSet(A;, S;) A AppSet(R;, S;) — IsOn(R;, A;)

where ) is a weight, ActivelnSet, AppSet, and IsOn are pred-
icates, and A4,, S;, and R, are all variables. By substituting
constants, a;, s;, and r; for the variables, A;, S;, and R, respec-
tively, one obtains three ground atoms: ActivelnSet(a;, s;),
AppSet(r,, s;), and IsOn(r;, a;), such that each ground atom
takes a value in [0,1]. Suppose that we let the atoms
ActivelnSet(a;, s;), AppSet(r, s;), and IsOn(r;, a;) correspond
to three random variables: y.,y.,and y; respectively.

We would like to assign values to these variables, and to do
so we find the values for each which minimize the distance to
satisfaction of the participating rule, which is formulated as
a hinge-loss. Given two continuous truth values ¢, € [0, 1]
a conjunction of ¢ and r is defined as g A r = maz{q +r —
1,0}. Finally, using the formula ¢ — r = —¢ v r, we arrive
at a weighted hinge-loss potential. For the above rule this
corresponds to:

A-maz{ys +y> —ys — 1,0}.

We can now find the a values for v, y., and ys which mini-
mize this loss.

We have just seen how a rule specified by a PSL model de-
fines a weighted hinge-loss function. To define a HL-MRF we
input the set of weighted logical rules defined in PSL, along
with our observed variables. The values to the weights can
be set from expert knowledge, or learned from data. In this
model we learn the values of the weights using training data.
We can then jointly infer the maximum a posteriori (MAP)
assignments to the unobserved variables. This problem has a
tractable convex formulation which is solved directly by the
PSL software !, using the alternating direction method of mul-
tipliers ADMM [Boyd er al., 2011].

Let = and y be vectors of observed and unobserved contin-
uous random variables in [0, 1], respectively. Formally, a HL-
MREF describes the following conditional probability density
function over « and y:

P(yl|z) o exp <— ijm(y, w))

Where ¢; is a hinge-loss potential, ¢; = max{l,(x,y),0}?,p €
{1,2}, I; is a linear function of = and y and w; is the positive
weight associated with ¢,.

Let y be a vector of IsOn(R;, A;) variables for all v
intervals and all N appliances, and let s be a vector of
AppSet(R;, S;) variables for all Vv intervals and all J appli-
ance sets. Let = denote all atoms which are observed, and
for which the truth values are thus known. We then formulate
our task as finding the MAP assignments to y and s under the
probability distribution defined by the HL-MRF formulation
of the rules described in 5.1:

argmax P(Y, S|z).
y,s

In the next section we evaluate the performance of this frame-
work on two real-world datasets.

'nttp://psl.lings.org



6 Empirical Evaluation

We evaluate our proposed disaggregation framework? on two
real-world datasets. We demonstrate the effectiveness of
our framework compared to ADMM-RR [Shaloudegi et al.,
2016], a recent, state-of-the-art approach. We also explore
the situations under which contextual information can help
improve model performance.

6.1 Data

We evaluate on two public datasets: The Reference Energy
Disaggregation Dataset (REDD) [Kolter and Johnson, 2011]
and Pecan Street Inc. (DATAPORT) [2016].

REDD: This is the most widely used dataset for energy dis-
aggregation. The dataset describes six homes, and each home
has an average of 21 days. The dataset contains fine-grained
meter readings at approximately six second intervals. Fol-
lowing Makonin et al. [2015] and Johnson et al. [2013],
we evaluate our model using homes 1, 2, 3, and 6 from the
dataset and likewise, we disaggregate the refrigerator, lights,
microwave, and dishwasher. Unlike previous work, we omit
the furnace as it appears in only a single home, and for home
6 we omit the dishwasher.

DATAPORT: We also evaluate on the Pecan Street dataset
which describes meter readings from Austin, Texas. This data
set is much larger than REDD (hundreds of homes over sev-
eral years) and is less well-studied in the context of disaggre-
gation. The readings are coarser, available at either 1 minute
or 1 hour intervals. We evaluated on the eight most common
appliances: air conditioner, furnace, refrigerator, dishwasher,
kitchen outlet, dryer, microwave and clotheswasher. As not
all homes have perfect data records; here we choose the five
homes (2859,3413,6990,7951,8292) for which there was at
least one year of complete data (no records missing for any
of the target appliances) and which had completed surveys
describing demographics and household features. The mod-
els for each home (including the weights) are trained using
the first 50% of the data, the next 25% of the data is used as a
validation set for model parameters, and the model was evalu-
ated on the final 25% of the data. With DATAPORT this train-
ing, validation, and testing is done for each month separately.
For both datasets, we estimate the mean and standard devia-
tion of the power consumption for each appliance based on
only the training data. Evaluation estimates used both train-
ing and validation data. To find the thresholds to partition
duration lengths into very short, short, medium, and long, we
found quartiles for the interval lengths, such that 25% of all
duration lengths were assigned to each duration. Similarly,
each temperature was uniformly partitioned into one of three
categorical labels, corresponding to cold, mild, and hot.

To partition the data into intervals, for each home we let §
be the difference between the average draw of a small appli-
ance less its standard deviation. For REDD homes the small
appliance was either the lights or the refrigerator, and for
DATAPORT it was always the refrigerator. To assign feasi-
ble appliance sets for each interval, we compute the absolute
difference between the mean consumption for each appliance

’Code available:  https://bitbucket.org/lings/
appliance_disambiguation
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Figure 1: MAE on REDD data.

Precision | Recall | F-Measure
Dishwasher 0.518 0.598 0.555
Lights 0.708 0.813 0.757
Microwave 0.707 0.712 0.709
Refrigerator 0.851 0.879 0.865
Average 0.696 0.751 0.722

Table 1: Performance of Interval Model on REDD data.

set and the observed power, scaled to be in [0, 1] and we then
retain only those sets which are within 0.5 of the actual power
consumption. If there are no such sets, we select the top three
closest sets.

6.2 Results

To estimate appliance consumption, both the appliance state
and the power consumption must be inferred. In order to
evaluate performance, we measure both at how well an algo-
rithm can predict the appliance states (precision, recall and F-
measure), and how well it predicts actual consumption (Mean
Absolute Error (MAE)). We evaluate three methods:
Instance: This model treats each instance independently,
models the appliance sets jointly and does not use dura-
tion information.
Interval: This is the model described in Section 5 where we
model both appliance sets and their durations.
ADMME-RR: This is the current state of the art method
which uses a factorial HMM model [Shaloudegi er al.,
2016]. We use the code they provide online.?

Fig. 1 shows the MAE of the three methods on the REDD
data set, and Table 1 shows the precision, recall and F-
measure, for each appliance using the interval model. Fig. 2
provides a detailed view of the difference between observed
and estimated energy usage for one specific home. The in-
terval model performs the best overall, reducing the MAE of
ADMM-RR by 50%.

The next set of results are on the DATAPORT data set. This
dataset includes contextual features not available in the REDD
dataset, so in addition to comparing the instance and inter-
val approaches, we explore a model which captures contex-
tual temporal and temperature features. Fig. 3 compares the
MAE of three PSL-based methods with the ADMM-RR base-

3To learn the required parameters we used the Matlab HMM
toolbox [Murphy, 1998] and the first 75% of the data for each home.
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Figure 2: Percentage of total energy consumption of each appli-
ance for a representative REDD home; predictions from the Interval
model.

Precision Recall F-Measure
Interval +Context | Interval +Context | Interval +Context
Air Conditioner 0.901 0.899 0.815 0.823 0.856 0.859
Clotheswasher 0.226 0.228 0.333 0.274 0.269 0.249
Dishwasher 0.063 0.072 0.360 0.368 0.108 0.121
Dryer 0.591 0.571 0.731 0.749 0.653 0.648
Furnace 0.844 0.829 0.621 0.645 0.716 0.726
Kitchen Appliance 0.045 0.046 0.426 0.358 0.081 0.082
Microwave 0.330 0.354 0.394 0.394 0.359 0.373
Refrigerator 0.675 0.675 0.806 0.828 0.735 0.744
Average 0.459 0.459 0.561 0.555 0.505 0.503

Table 2: Performance of the Interval and Context Models on DATA-
PORT data. The effect of context varies by home and appliance.

line on the DATAPORT dataset, and Table 2 shows the preci-
sion, recall, and F-measure for each appliance for the inter-
val and context-based models. A paired t-test demonstrates
the context-based PSL model provides a statistically signif-
icant improvement over the interval model on MAE. Table
2 reveals that the effect of context differs by appliance, with
the contextual models performing best on the appliances with
high energy consumption. Fig. 4 provides a more detailed
view of the difference between observed usage and model es-
timates for one specific home.

To understand the value of different contextual signals, we
examine appliances for which temperature and temporal in-
formation has the greatest benefit. Contextual rules on tem-
perature improved the predictions for heating and cooling ap-
pliances, with statistically significant improvements for the
refrigerator and air conditioner. Temporal information im-

Hl Instance
A Interval

100 EFEN +Context
=] ADMM-RR
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Mean Absolute Error (Watts)
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Figure 3: The MAE for Instance, Interval and Context Models on
DATAPORT data, with both 1-minute and 1-hour readings. The con-
textual information provides a statistically significant improvement
for readings at both time resolutions.
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Figure 4: Percentage of total energy consumption of each appli-
ance for a representative REDD home; predictions from the Interval
model.

proved average predictions for appliances with periodic us-
age patterns, such as the clotheswasher, dishwasher, dryer,
and microwave.

7 Discussion

Our proposed disaggregation framework achieves state-of-
the-art performance on two real-world datasets, reducing er-
ror by 50% and 25% on REDD and DATAPORT datasets, re-
spectively. Our algorithm adapts to different granularities of
data, from the 6 second samples of REDD, to the 1-minute
and 1-hour samples from DATAPORT. Not surprisingly, the
DATAPORT dataset is more challenging, as we disaggregate
more appliances at a rougher resolution, yet the F-measure
for the most energy-intensive appliances remains above 0.7.
Across datasets, we demonstrate that the interval representa-
tion, which aggregates readings into usage events, improves
performance over a purely instance-level representation even
when readings have low granularity. Beyond representation,
one strength of our approach is the ability to incorporate dif-
ferent types of contextual information. Contextual informa-
tion provides a small reduction in error and targeted improve-
ments in predictive performance, however we had anticipated
more pronounced improvements. One potential explanation
is the limited range of contextual information due to the small
temperature range in the dataset. In future work, we hope to
pursue a deeper exploration of contextual information and its
efficacy at generalizing predictions across homes.

While smart meters have been installed in homes across
the United States, their potential in reducing consumer energy
consumption is far from realized. Improved energy disaggre-
gation algorithms can help to reach that potential by discov-
ering appliance-level consumption patterns that consumers
need to make informed decisions about their energy usage. In
the paper, we propose such an algorithm, which is efficient,
scalable, and readily adapted to new sources of information.
By performing inference over intervals, and modeling collec-
tions of feasible appliance sets, we reduce the complexity of
the problem while retaining the advantages of a structured
probabilistic formulation. A key advantage of our framework
is that additional information can be incorporated easily. For
example, we could enrich our models by incorporating richer
user and building profiles.
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