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ABSTRACT
Hybrid recommender systems combine several di�erent sources of

information to generate recommendations. These systems demon-

strate improved accuracy compared to single-source recommen-

dation strategies. However, hybrid recommendation strategies are

inherently more complex than those that use a single source of

information, and thus the process of explaining recommendations

to users becomes more challenging. In this paper we describe a

hybrid recommender system built on a probabilistic programming

language, and discuss the bene�ts and challenges of explaining

its recommendations to users. We perform a mixed model statis-

tical analysis of user preferences for explanations in this system.

Through an online user survey, we evaluate explanations for hybrid

algorithms in a variety of text and visual, graph-based formats, that

are either novel designs or derived from existing hybrid recom-

mender systems.
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1 INTRODUCTION
Successful recommender systems are integral to many applications

ranging from movie recommendations to e-commerce. E�ective

recommendations must be both accurate and explainable [9, 10,

13, 16]. Hybrid recommender systems, which use a combination

of signals such as social connections, item attributes, and user

behavior, demonstrate improved recommendation accuracy [4].

However, compared to non-hybrid counterparts, hybrid models

are more complex, and present many challenges when explaining

recommendations to users. In this work, we study how to provide

useful hybrid explanations that capture informative signals from a

multitude of data sources without the burden of understanding the

complex hybrid model.

Explanatory approaches for traditional, non-hybrid systems rely

on a single explanation style (e.g., collaborative, content, knowl-

edge, utility, or social explanation styles) [7]. Existing work has

explored user preferences for these single-style explanations [2, 8].
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We recommend Crudo to Mary because:

1. Mary’s friends Cindy and 4 others like Crudo 
2. Mary likes Sipan and 3 other restaurants  

that are also Peruvian like Crudo 
3. People who like LaMar and 6 other restaurants,  

also like Crudo & Mary likes LaMar  
and these 6 same restaurants

Figure 1: A subset of visualizations presented in our user
study of hybrid explanations.

Visualization techniques for explaining recommendations include

interfaces with concentric circles [11, 18], Venn diagrams [21], and

pathways between columns [3], among many others. Hybrid ex-

planations have been shown to be more e�ective than single-style

explanations [20], but to the best of our knowledge, there is no

study that adapts visualization techniques to hybrid recommenders

or compares user preferences for hybrid explanations.

In this work, we identify several important dimensions for de-

signing hybrid explanations. Using HyPER [14], a state-of-the-art

recommender system, we develop a method for generating explana-

tions from a hybrid model. We conduct a crowdsourced user study

(N=200) to evaluate several di�erent design approaches for hybrid

explanations. This study answers several fundamental questions

about designing hybrid explanations: 1) What visualization is best

for hybrid explanations? 2) How should explanations be organized?

3) How much information should be in each explanation? 4) How

detailed should each explanation be? Fig. 1 presents a sample of dif-

ferent visualizations that we generated in order to understand user

preferences for hybrid explanations (for full details see [15]). This

general evaluation strategy can be used to study user preferences

for di�erent recommendation domains, such as career sites, music

services, and navigational routes.

Our contributions are: 1) a method for generating hybrid expla-

nations from a hybrid recommender system based on a probabilistic

programming language, 2) a list of ways explanations can be pre-

sented 3) a user evaluation of the di�erent design approaches, and

4) a set of guidelines for designers of hybrid explanation interfaces.



2 RELATEDWORK
Several previous studies have considered explanations for recom-

mender systems, demonstrating explanations can increase persua-

siveness [8] and satisfaction [25, 26]. To better understand user pref-

erences, research has compared explanation styles [2], combined

di�erent explanation styles [24], and considered dimensions such

as personalization [25, 26], tags [30], ranking [17], and natural lan-

guage presentations [5]. In addition to user preferences and design

criteria for explanations, several GUIs and visualizations have been

proposed for recommendations, including concentric circles (Peer-

Chooser [11, 18]), clustermaps (TalkExplorer [29]), Venn diagrams

(SetFusion [21]), and paths among columns (TasteWeights [3, 12]).

Extending these ideas, we focus on hybrid explanations and study

user preferences across designs and interfaces.

3 HYBRID EXPLANATIONS
The �rst challenge in understanding hybrid explanations is devel-

oping a system to translate a hybrid recommender model into a

set of component signals and the utility of each component in the

model. Here, we use HyPER [14] which makes use of probabilistic

soft logic (PSL) [1], a generic probabilistic reasoning framework.

We summarize the HyPER model, then describe our approach to

converting the model’s output to visualizable explanations. Our

approach is compatible with any hybrid system with similar output.

The HyPER model is speci�ed using a series of rules in �rst-order

logic syntax de�ned by the modeler. The rules are used to de�ne

a probability distribution over recommendations. For example, to

implement user-based collaborative �ltering recommendations, the

following rule is included in the PSL model:

wsu : SimilarUsers(u1, u2) ∧ Likes(u1, i ) ⇒ Likes(u2, i ) . (1)

Each rule is associated with a weight, learned from training data,

capturing the importance of the rule to the model. In addition to the

user-based collaborative �ltering rule above, HyPER also includes

item-based collaborative �ltering rules with mean-centering priors,

as well as rules for social-based recommendations using friendships,

and content-based rules for using item attributes.

Next, a process known as grounding is used to combine the model

with data and instantiate a set of propositions. For example, given a

dataset with user ratings and a social network, user similarities, item

similarities, social relationships, and item attributes are generated

as evidence. Together, these ground rules are used by PSL to de�ne

a probabilistic graphical model which ranks unseen user-item pairs.

Running inference in HyPER generates recommendations cap-

tured by the Likes predicate. After inference is complete, we select

the top k items for each user. Then, for each of the top Likes(u, i ),
we produce associated groundings used during the inference pro-

cess. For example, in a restaurant recommendation setting, suppose

that Mary’s top recommended restaurant is Crudo (i.e., the pre-

dicted value of the unobserved variable Likes(Mary,Crudo) has

the highest value among all other predicted values). While inferring

the value of Likes(Mary,Crudo), HyPER generated the following

ground rules:

Friends(Mary, Cindy ) ∧ Likes(Cindy, Crudo) ⇒ Likes(Mary, Crudo)

Peruvian(Limon, Crudo) ∧ Likes(Mary, Limon) ⇒ Likes(Mary, Crudo)

SimilarUsers(Mary, John) ∧ Likes(John, Crudo) ⇒ Likes(Mary, Crudo)

SimilarItems(Crudo, LaMar ) ∧ Likes(Mary, LaMar ) ⇒ Likes(Mary, Crudo)

Explanation Style We recommend Crudo because:

Social 1. Your friend Cindy likes Crudo

Content 2. You like Peruvian restaurants, like Crudo

User-based 3. Users with similar tastes as you like Crudo

Item-based 4. People who like LaMar, also like Crudo and

you like LaMar

Item average rating 5. Crudo is highly rated

User average rating 6. You tend to give high ratings

Table 1: Example of an explanation for a restaurant (Crudo).

Since the groundings are di�erent for each user-item prediction, the

resulting explanations are inherently personalized. In Table 1, we

present one way of visualizing these groundings using a parser that

converts logical rules to natural language. In the next section, we

discuss several design considerations and alternative presentations

that can be implemented using the set of ground rules.

4 PRESENTATION OF EXPLANATIONS
Given hybrid explanations from HyPER, the next step is designing

an interface to present these explanations to users. At a high level,

the goal of any presentation style is to improve the user experience.

We study the e�ect of di�erent explanation presentation styles on

user experience. To this end, we identify several dimensions for

designing interfaces:

• Presentation (Pres.): Natural language (Table 1), rule-based

(equation 3), or graphical visualizations.

• Weighting (Wgt): Whether or not explanation weights are dis-

played.

• Grouping (Group): Whether or not explanations are grouped

by style. Each rule can have many groundings in a dataset. For ex-

ample, do users prefer to be shown the explanation “Mary’s friend
Cindy likes Crudo; Mary’s friend Josh likes Crudo” or grouping

explanations, “Mary’s friends Cindy and Josh like Crudo.”?

• Information Density (Dens.): Amount of information shown.

• Aggregation (Aggr.): Whether or not rules are aggregated in the

grouping case. Do users prefer explanations of the type “Mary’s
friends Cindy and 4 others like Crudo.” or “Mary’s friends Cindy,
Josh, Rosie, George, Michael like Crudo.”?

• Meta-explanations (Meta): Amount of high-level metadata in

explanations (i.e., user similarity, item average rating, and user

average rating).

• Visualization (Visual): There are di�erent ways of visualizing

hybrid explanations, such as concentric circles [11, 18], Venn

diagrams [21], and pathways among columns [3]. For Venn di-

agrams we used three intersections as suggested in [29]. Path-

ways among columns was tested with and without display of

rules/reasoning.

In addition to the e�ect of di�erent presentation styles on user

experience, we also studied whether users have a speci�c preference

over the ranking of the di�erent explanation styles. For example, do

users prefer to see social explanations before content-based ones?

5 EVALUATION
We constructed a set of 13 di�erent treatments (Table 2) based

on the explanation dimensions described in Section 4. Testing all

possible subsets of dimensions was prohibitive, so we chose subsets

that we judged as the most informative for explanation design. We
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Figure 2: Mean UXP for each treatment. Errors bars are 95% con�dence intervals. Treatment descriptions are given in Table 2.

Treat. Pres. Wgt Group Dens. Aggr. Meta
BASE no exp. no no NA no NA

AGGR english no yes low yes low

GROUP english no yes high no low

RULE rule no no low no high

WGT english yes no low no high

PLAIN english no no low no high

NO-GR english no no med no low

MED-IN english no yes med no low

LOW-IN english no yes low no low

Visual Style
COL visual COLumns + pathways

CPR visual Columns + Pathways with Reasoning

VENN visual VENN diagram

CC visual Concentric Circles

Table 2: Dimension values for each treatment for the di�er-
ent types of explanations tested.

evaluated explanations for a variety of textual and visual formats.

We also included a baseline treatment (BASE) where we presented

a recommendation item without any explanation.

We collected 200 samples of within-subjects participant data us-

ing Amazon’s Mechanical Turk. The design used in our study [19]

has been shown to minimize e�ects of satis�cing (e.g., tab-click

behavior) in crowdsourced studies. Overall, participants spent be-

tween 10 and 30 minutes for the study, 95% of participants were

between 18 and 50 years of age, and 42% were male. The data was

checked for satis�cing users by checking input patterns and timings,

however, none of the participants showed indications of violating

the assumptions of the study. Each participant was rewarded with

$0.5 as incentive.

5.1 Setup
Interface mockups were shown to participants in random order. All

the mockups and details of the study can be found in [15]. We ran

a synthetic experiment where all users were shown the exact same

mockups that were manually generated. Each mockup presented a

hybrid explanation for a random user called “Mary” for the restau-

rant “Crudo”. For each mockup, we elicited answers for a set of user

experience questions, corresponding to understandability, system

satisfaction, and perceived persuasiveness (Table 3).

Subjective metrics relating to recommender systems have shown

to be strongly correlated (e.g., [22]), thus, con�rmatory factor anal-

ysis was used to group the question items into a latent user ex-

perience variable to allow for simpler presentation of results and

eliminate measurement error. A Cronbach’s alpha [6] of 0.89 indi-

cates good internal reliability of the constructed user experience

(UXP) factor. Average variance extracted (AVE) was 0.64, indicating

good convergent validity (AVE > 0.5).

Our experiment considered how participants’ individual charac-

teristics could a�ect user experience scores for each treatment. We

asked pre-study questions related to visualization familiarity (VF,

also shown in Table 3). Analysis showed co-variance between visu-

alization familiarity and user experience was less than 0.5, which

indicates good discriminant validity between the constructs.

Users were also given a task to rank di�erent explanation styles

according to their preference using a drag and drop interface. Specif-

ically, we showed users the explanations from Table 1 (hiding the

style) and asked them to rank these styles from the most to least

important. We randomized the order di�erent explanation styles

were shown to avoid any order-related biases.

Factor Question Item Description R2 Est.
VF
Cronbach:

0.85

AVE: 0.60

I am familiar with data visualization. 0.54 0.96

I frequently tabulate data with computer

software.

0.63 1.20

I have graphed a lot of data in the past. 0.81 1.38

I am an expert at data visualization. 0.57 1.21

UXP
Cronbach:

0.87

AVE: 0.64

Understandability: The recommendation

process is clear to me.

0.73 0.86

Satisfaction: I would enjoy using this sys-

tem if it presented recommendations in

this way.

0.68 0.82

Persuasiveness: The recommendation is

convincing.

0.77 0.88

Table 3: The latent VF and UXP factors built on participant
responses to subjective questions.

5.2 Results
Figure 2 shows a plot of the mean user experience (factor loadings

�xed to 1). To test for di�erences between the within-subjects treat-

ments, we used structural equation modeling (SEM) [28], which

can accommodate latent variables during signi�cance testing, thus

eliminating measurement error. We speci�ed two factor models:

the �rst with all within-subjects variables loaded onto a single

factor (null hypothesis: no di�erences between treatments); the

second with a factor speci�ed for each of the 13 treatments (hy-

pothesis: treatments cause a change in UXP). The model with a

factor speci�ed for each treatment achieved better �t. We used the

Akaike Information Criterion (AIC) to estimate the quality of each

model (a lower AIC indicates better comparative �t) and achieved



BASE AGGR GROUP RULE WGT PLAIN NO-GR MED-IN LOW-IN COL CPR VENN CC

β 0.21 0.10 0.18 0.41 0.38 0.28 0.35 0.32 0.24 0.57 0.33 0.39 0.29

Err. 0.08 0.08 0.08 0.09 0.09 0.08 0.09 0.09 0.08 0.09 0.09 0.09 0.08

P ** 0.2 * *** *** ** *** *** ** *** *** *** ***

Table 4: Regressions coe�cients (β) in a SEM that examine the relationship between visualization familiarity and observed
user experience for each treatment. UXP/VF are latent variables with µ = 0,σ = 1, e�ect sizes (β) on UXP are measured as SD
from the mean as VF changes. Signi�cance levels for this table: *** p < .001, ** p < .01, * p < .05.

1
.5

2
.0

2
.5

3
.0

M
ea

n 
R

at
in

g

Social Content User−based Item−based Item Avg User Avg

n=200 n=200 n=200 n=200 n=200 n=200

Figure 3: Means of participant ratings (1-6, with 6 being the
highest preference) for the explanation style ranking task.
Error bars are 95% con�dence intervals.

AIC = 25838 for the single factor model vs. AIC = 22908 for the

model with a factor for each treatment. This result indicates that

there exist di�erences in UXP between treatments and thus the null

hypothesis is rejected.

Next, we performed post-hoc tests between each treatment using

a Raykov change model [23] (this mimics the popular Tukey test

[27] while still allowing the use of latent variables). In this method,

one factor (treatment) is used as a baseline and a slope is calculated

between it and another factor. The post-hoc test showed that the

interface using Venn diagrams (VENN) was signi�cantly better than

all other visual treatments and the baseline (p < 0.001 for BASE,

COL,CPR, and CC). VENN also performed signi�cantly better than

AGGR, GROUP, NO-GR, MED-IN, and LOW-IN (∀ p < 0.05). The

RULE treatment performed signi�cantly worse than the explana-

tions in plain English, as well as VENN (∀ p < 0.001). All English

treatments performed signi�cantly better than the baseline BASE

(∀ p < 0.001). There was no signi�cant di�erence between any of

the English treatments (∀ p > 0.10), however, the mean for PLAIN

was the highest. Consequently, weights, information density, ag-

gregation, and grouping were also non-signi�cant (∀ p > 0.10).

Results from the ranking task are shown in Figure 3. For our

analysis we converted the ranking into rating data, i.e., the item

listed �rst was given a rating of 6 and the item ranked last received

rating 1. Users showed the strongest preference for item average

rating explanations, followed by user-based and social explanations.

A repeated measures ANOVA revealed di�erences in rating between

the explanation styles (p < 0.001). A Tukey post-hoc test showed no

statistical di�erence between social, user-based, and item average

rating explanations (∀ p > 0.10). However, social, user-based, and

item average rating were signi�cantly better than item-based and

user average rating (∀p < 0.05). User-based and item average rating

were signi�cantly better than content explanations (both p < 0.05).

Finally, we conducted analysis on the relationship between vi-

sualization familiarity and user experience. A SEM was built with

visualization familiarity regressed onto user experience measure-

ments for each treatment (Table 4). Results indicate that visualiza-

tion familiarity predicts increased user experience in all treatments,

except AGGR. The highest increase in user experience is seen in

COL and RULE. Model �t: N = 200 with 174 free parameters,

RMSEA = 0.064 (CI : [0.058, 0.069]), TLI = 0.89,CFI = 0.90 over

null baseline model, χ2 (772) = 1397 (indicate acceptable �t, how-

ever, note that overall model �t is not an indicator of whether e�ects

exist between variables).

6 DISCUSSION AND CONCLUSION
We have presented an evaluation of di�erent visualization ap-

proaches using hybrid explanations. The results support prior �nd-

ings [7] that explanations improve the user experience of recom-

mender systems.

More speci�cally, Venn diagrams outperform all other visual

interfaces and �ve of seven English interfaces, but are di�cult to

adapt to more than three sources. Natural language approaches

were preferable to rule groundings from HyPER. Our experiments

did not show a statistically signi�cant di�erence across dimensions

such as weights, information density, aggregation, or grouping in

these explanations. This suggests that most plain English expla-

nations may perform more or less the same in recommendation

settings. Our results indicated that social, user-based, and item

average rating explanations were the preferred explanation styles

by users. Furthermore, we have established a reliable scale, as evi-

denced by Cronbach’s α , for visualization familiarity which might

be used to tailor explanation styles to individual users.

Additionally, we discovered that color-blind users (N = 14) rated

the RULE interface higher in terms of UXP than the rest of the

sampled population, with marginal signi�cance (β = 0.15,p =
0.051). The mockup for this interface used a fairly intense violet

color which may have been di�cult to read for all but the colorblind

users. While the colorblind sample was not large enough to change

the results of the study, it highlights the need to accommodate these

types of users when evaluating UXP for recommender systems.

The mockups that we showed to the users were manually pro-

duced and not generated by the HyPER system. As a result, the study

was synthetic and did not support personalization. In future work

we plan to analyze factors such as the quality of the recommenda-

tion and whether the user agrees and connects with the evidence.

To this end, we plan to use HyPER’s output, implement the best

performing interfaces from our study (Venn, English PLAIN) and

run a more comprehensive user case study in a lab setting to better

understand e�ectiveness, e�ciency, and user satisfaction of the

explanatory system. One open question is determining e�ective

methods for ranking explanations. We plan to compare several

ranking strategies by designing interactive interfaces that support

personalization.
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