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Abstract—Entity resolution in settings with rich relational
structure often introduces complex dependencies between co-
references. Exploiting these dependencies is challenging – it
requires seamlessly combining statistical, relational, and logical
dependencies. One task of particular interest is entity resolution
in familial networks. In this setting, multiple partial represen-
tations of a family tree are provided, from the perspective of
different family members, and the challenge is to reconstruct a
family tree from these multiple, noisy, partial views. This recon-
struction is crucial for applications such as understanding genetic
inheritance, tracking disease contagion, and performing census
surveys. Here, we design a model that incorporates statistical
signals, such as name similarity, relational information, such
as sibling overlap, and logical constraints, such as transitivity
and bijective matching, in a collective model. We show how to
integrate these features using probabilistic soft logic, a scalable
probabilistic programming framework. In experiments on real-
world data, our model significantly outperforms state-of-the-
art classifiers that use relational features but are incapable of
collective reasoning.

I. INTRODUCTION

Entity resolution, the problem of identifying, matching,
and merging references corresponding to the same entity
within a dataset, is a widespread challenge in many domains.
Here, we consider one particularly compelling application, the
problem of entity resolution in familial networks, which is an
essential component in applications such as social network
analysis [13], medical studies [20], family health tracking and
electronic healthcare records [14], genealogy studies [10], and
areal administrative records, such as censuses [27]. Familial
networks contain a rich set of relationships between entities
with a well-defined structure, which differentiates this problem
setting from general relational domains such as citation net-
works that contain a fairly restricted set of relationship types.

As a concrete example of entity resolution in familial
networks, consider healthcare records from several patients
from a single family. Each patient supplies a family medical
history, identifying the relationship to an individual and their
symptoms. One patient may report that his 15-year old son
suffers from high blood sugar, while another patient from the
same family may report that her 16-year old son suffers from
type 1 diabetes. Assembling a complete medical history for
this family requires determining whether the two patients have
the same son and are married.

In this setting, a subset of family members independently
provide a report of their familial relationships. This process
yields several ego-centric views of a portion of a familial

Fig. 1: Two familial ego-centric trees. Bold black borders
indicate the root of the tree. Persons in same color represent
same entities. White means that the persons were not matched
across the trees.

network, i.e., persons in the family together with their re-
lationships. Our goal is to infer the entire familial network
by identifying the people that are the same across these ego-
centric views. For example, in Figure 1 we show two partial
trees for one family. In the top tree, the patient “Jose Perez”
reported his family tree and mentioned that his 15-year old
son, also named “Jose Perez,” has high blood sugar. In the
bottom tree, the patient “Anabel Perez” reported her family
tree and mentioned that her 16-year old son suffers from type
1 diabetes. In order to assemble a complete medical history for
this family we need to infer which references refer to the same
person (indicated by the same colors), e.g., that “Ana Maria
Perez” from the top tree is the same person with “Anabel
Perez” from the bottom tree.

Typical approaches to performing entity resolution use
attributes characterizing a reference (e.g., name, occupation,
age) to compute different statistical signals that capture simi-
larity, such as string matching for names and numeric distance
for age [27]. However, relying only on attribute similarity to
perform entity resolution in familial networks is problematic
since these networks present unique challenges: attribute data
is frequently incomplete, unreliable, and/or insufficient. Par-
ticipants providing accounts of their family frequently forget
to include family members or incorrectly report attributes,
such as ages of family members. In other cases, they refer
to the names using alternate forms. For example, consider the
two ego-centric trees of Figure 1. The top tree contains one
individual with the name “Ana Maria Perez” (age 41) and



the bottom one an individual with the name “Anabel Perez”
(age 40). In this case, using name and age similarity only,
we may possibly determine that these persons are not co-
referent, since their ages do not match and the names vary
substantially. Furthermore, even when participants provide
complete and accurate attribute information, this information
may be insufficient for entity resolution in familial networks.
In the same figure, the top tree contains two individuals of
the name “Jose Perez”, while the bottom tree contains only
one individual “Jose Perez.” Here, since we have a perfect
match for names for these three individuals, we cannot reach
a conclusion which of the two individuals of the top tree
named after “Jose Perez” match the individual “Jose Perez”
from the bottom tree. Additionally using age similarity would
help in the decision, however, this information is missing
for one person. In both cases, the performance of traditional
approaches that rely on attribute similarities suffers in the
setting of familial trees.

In this scenario, there is a clear benefit from exploiting
relational information in the familial networks. Approaches
incorporating relational similarities [4], [9], [16] frequently
outperform those relying on attribute-based similarities alone.
Recently [25], collective approaches where related resolu-
tion decisions are made jointly, rather than independently,
showed improved entity resolution performance, albeit with
the tradeoff of increased time complexity. General approaches
to collective entity resolution have been proposed [23], but
these are generally appropriate for one or two networks and do
not handle many of the unique challenges of familial networks.
Accordingly, much of the prior work in collective, relational
entity resolution has incorporated only one, or a handful, of
relational types, has limited entity resolution to one or two
networks, or has been hampered by scalability concerns.

In contrast to previous approaches, we develop a scal-
able approach for collective relational entity resolution across
multiple networks with multiple relationship types. Our ap-
proach is capable of using incomplete and unreliable data
in concert with the rich multi-relational structure found in
familial networks. We view the problem of entity resolution
in familial networks as a collective classification problem
and propose a model that can incorporate statistical signals,
relational information, and logical constraints. Our model is
able to collectively reason about entities across networks using
these signals, resulting in improved accuracy. To build our
model, we use probabilistic soft logic (PSL) [3], a probabilistic
programming framework which uses soft constraints to specify
a joint distribution over possible entity matchings. PSL is
especially well-suited to entity resolution tasks due to its
ability to unify attributes, relations, and constraints such as
bijection and transitivity into a single model.

Our contributions mirror the structure of this paper. In
Section II we formally define the problem of entity resolution
for familial networks. Section III introduces a process of nor-
malization that enables the use of relational features for entity
resolution in familial networks. In Section IV, we develop a
scalable entity resolution framework that effectively combines
attributes, relational information, and logical constraints. Sec-

tion V first presents an extensive evaluation on two real-world
datasets, from real patient data from the National Institutes
of Health and Wikidata, demonstrating that our approach
beats state-of-the-art methods while maintaining scalability as
problems grow. Next, we provide a detailed analysis of the
features most useful for relational entity resolution, providing
advice for practitioners. Section VII briefly surveys the related
approaches to relational entity resolution. Finally, Section VII
highlights several potential applications for our method and
promising extensions to our approach.

II. PROBLEM SETTING

We consider the problem setting where we are provided a
set of ego-centric reports of a familial network. Each report
is given from the perspective of a participant and consists of
two types of information: family members and relationships.
The participant identifies a collection of family members
and provides personal information such as name, age, and
gender for each person (including herself). The participant also
reports their relationships to each family member, which we
categorize as first-degree relationships (mother, father, sister,
daughter, etc.) or second-degree relationships (grandfather,
aunt, nephew, etc.). Our task is to align family members across
reports in order to reconstruct a complete family tree. We
refer to this task as entity resolution in familial networks and
formally define the problem as follows:

Problem Definition. We assume there is an under-
lying family F = 〈A,Q〉 which contains (unob-
served) actors A and (unobserved) relationships Q amongst
them. We define A = {A1, A2, . . . , Am} and Q =
{rta(Ai, Aj), rta(Ai, Ak), rtb(Ak, Al) . . . rtz (Ak, Am)}. Here
ta, tb, tz ∈ τ are different relationship types between individ-
uals (e.g. son, daughter, father, aunt). Our goal is to recover
F from a set of k participant reports, R.

We define these reports as R = {R1,R2, . . . ,Rk}, where
superscripts will henceforth denote the participant associated
with the reported data. Each report, Ri = 〈pi,Mi,Qi〉 is
defined by the reporting participant, pi, the set of family
members mentioned in the report, Mi, and the participant’s
relationships to each mention, Qi. We denote the mentions,
Mi = {pi,mi

1, . . . ,m
i
li
}, where each of the li mentions

includes (possibly erroneous) personal attributes and corre-
sponds to a distinct, unknown actor in the family tree (note
that the participant is a mention as well). We denote the
relationships Qi = {rta(pi,mi

x), . . . , rtb(p
i,mi

y)}, where
ta, tb ∈ τ denote the types of relation, and mi

x and mi
y denote

the mentioned family members with whom the participant pi

shares the relation types ta and tb respectively. A participant
pi can have an arbitrary number of relations of the same
type (e.g. two daughters, three brothers, zero sisters). Our
goal is to examine all the mentions (participants and non-
participants) and perform a matching across reports to create
sets of mentions that correspond to the same actor. The
ultimate task is to construct the unified family F from the
collection of matches.

Entity Resolution Task. A prevalent approach to entity
resolution is to cast the problem as a binary, supervised



Fig. 2: Above: The tree corresponding to a participant report
provided by “Jose Perez”. Below: The derived normalized tree
from the perspective of “Ana Maria Perez”.

classification task and use machine learning to label each
pair of entities as matching or non-matching. In our specific
problem setting, this corresponds to introducing a variable
SAME(x, y) for each pair of entities x, y occurring in distinct
participant reports. Formally, we define ∀i 6=j∀mi

x∈Mi∀mj
y∈Mj

SAME(mi
x,m

j
y). Our goal is to determine for each pair of

mentions if they refer to the same actor.
In order to achieve this goal, we must learn a decision

function that, given two mentions, determines if they are the
same. Although the general problem of entity resolution is
well-studied, we observe that a significant opportunity in this
specific problem setting is the ability to leverage the familial
relationships in each report to perform relational entity resolu-
tion. Unfortunately, the available reports, R are each provided
from the perspective of a unique participant. This poses a
problem since we require relational information for each
mention in a report, not just for the reporting participant. We
refer to the problem of recovering mention-specific relational
features from participant reports as relational normalization,
and present our algorithm in the next section.

III. PREPROCESSING VIA RELATIONAL NORMALIZATION

Since the relational information available in participant re-
ports is unsuitable for entity resolution, we undertake the pro-
cess of normalization to generate mention-specific relational
information. To do so, we translate the relational information
in a report Ri into an ego-centric tree, Ti

j , for each mention
mi

j . Here the notation Ti
j indicates that the tree is constructed

from the perspective of the jth mention of the ith report. We
define Ti

j = 〈mi
j ,Q

i
j〉, where Qi

j is a set of relationships.
Constructing these trees consists of two steps: relationship
inversion and relationship imputation.

a) Relationship Inversion: The first step in populating
the ego-centric tree for mi

j is to invert the relationships in Ri

so that the first argument (subject) is mi
j . More formally, for

each relation type tj ∈ τ such that rtj (p
i,mi

j), we introduce
an inverse relationship rt′i(m

i
j , p

i). In order to do so, we
introduce a function inverse(τ,mi

j , p
i) → τ which returns

the appropriate inverse relationship for each relation type. Note

that the inverse of a relation depends both on the mention and
the participant, since in some cases mention attributes (e.g.
father to daughter) or participant attributes (e.g. daughter to
father) are used to determine the inverse.

b) Relationship Imputation: The next step
in populating Ti

j is to impute relationships for
mi

j mediated through pi. We define a function
impute(rx(p

i,mi
j), ry(p

i,mi
k))→ rk(m

i
j ,m

i
k). For example,

given the relations {rfather(pi,mi
j), rmother(p

i,mi
k)} in

Ti(pi), then we impute the relations rspouse(mi
j ,m

i
k) in Ti

j

as well as rspouse(mi
k,m

i
j) in Ti

k.
Figure 2 shows an example of the normalization process.

We begin with the top tree centered on “Jose Perez” and after
applying inversion and imputation we produce the bottom tree
centered on “Ana Maria Perez”. Finally, we note that since
initially we have relational information for just one person
in each tree, then it will be impossible to use any relational
information if we do not perform the normalization step.

IV. ENTITY RESOLUTION MODEL FOR
FAMILIAL NETWORKS

After recovering the mention-specific relational features
from participant reports, our next step is to develop a model
that is capable of collectively inferring mention equivalence
using the attributes, diverse relational evidence, and logical
constraints. We cast this entity resolution task as inference in
a graphical model, and use the probabilistic soft logic (PSL)
framework to define a probability distribution over co-referent
mentions. Several features of this problem setting necessitate
the choice of PSL: (1) entity resolution in familial networks is
inherently collective, requiring constraints such as transitivity
and bijection; (2) the multitude of relationship types require an
expressive modeling language; (3) similarities between men-
tion attributes take continuous values; (4) potential matches
scale polynomially with mentions, requiring a scalable solu-
tion. PSL provides collective inference, expressive relational
models defined over continuously-valued evidence, and for-
mulates inference as a scalable convex optimization. In this
section we provide a brief primer on PSL and then introduce
our PSL model for entity resolution in familial networks.

A. Probabilistic Soft Logic (PSL)
Probabilistic soft logic is a probabilistic programming lan-

guage that uses a first-order logical syntax to define a graph-
ical model [2]. In contrast to other approaches, PSL uses
continuous random variables in the [0, 1] unit interval and
specifies factors using convex functions, allowing tractable
and efficient inference. PSL defines a Markov random field
associated with a conditional probability density function over
random variables Y conditioned on evidence X,

P (Y|X) ∝ exp
(
−

m∑
j=1

wjφj(Y,X)
)

, (1)

where φj is a convex potential function and wj is an associated
weight which determines the importance of φj in the model.
The potential φj takes the form of a hinge-loss:

φj(Y,X) = (max{0, `j(X,Y)})pj . (2)



Here, `j is a linear function of X and Y, and pj ∈ {1, 2}
optionally squares the potential, resulting in a squared-loss.
The resulting probability distribution is log-concave in Y, so
we can solve maximum a posteriori (MAP) inference exactly
via convex optimization to find the optimal Y. The convex
formulation of PSL is the key to efficient, scalable inference
in models with many complex interdependencies.

PSL derives the objective function by translating logical
rules specifying dependencies between variables and evidence
into hinge-loss functions. PSL achieves this translation by us-
ing the Lukasiewicz norm and co-norm to provide a relaxation
of Boolean logical connectives [17]:

p ∧ q = max(0, p+ q − 1)

p ∨ q = min(1, p+ q)

¬p = 1− p .

To illustrate PSL in an entity resolution context, the fol-
lowing rule encodes that mentions with similar names and the
same gender might be the same person:

SIMNAME(m1,m2) ∧ EQGENDER(m1,m2)⇒ SAME(m1,m2) ,
(3)

where SIMNAME(m1,m2) is a continuous observed atom
taken from the string similarity between the names of m1 and
m2 , EQGENDER(m1,m2) is a binary observed atom that takes
its value from the logical comparison m1.gender = m2.gender
and SAME(m1,m2) is a continuous value to be inferred, which
encodes the probability that the mentions m1 and m2 are the
same person. If this rule was instantiated with the assignments
m1=John Smith, m2=J Smith the resulting hinge-loss
potential function would have the form:

max(0, SIMNAME(John Smith,J Smith)

+ EQGENDER(John Smith,J Smith)

− SAME(John Smith,J Smith)− 1) .

B. PSL Model

We define our model using rules similar to those in (3),
allowing us to infer the SAME relation between mentions. Each
rule encodes graph-structured dependency relationships drawn
from the familial network (e.g., if two mentions are co-referent
then their mothers should also be co-referent) or conventional
attribute-based similarities (e.g., if two mentions have similar
first and last name then they are possibly co-referent). We
present a set of representative rules for our model, but note
that additional features (e.g., locational similarity, conditions
from a medical history, or new relationships) can easily be
incorporated into our model with additional rules.

1) Name Similarity Rules: One of the most important
mention attributes are mention names, and historically en-
tity resolution research has focused on engineering similarity
functions that accurately capture patterns in name similarity.
In our model, we use two popular similarity functions, the
Levenshtein [21] and Jaro-Winkler [27]. The first is known to
work well for common typographical errors, while the second
is specifically designed to work well with names. We introduce
a rule that captures the intuition that when two mentions

have similar names (according to the Jaro-Winkler similarity
function) they are more likely to represent the same person:

SIMNAMEJW (m1,m2)⇒ SAME(m1,m2) .

This rule reinforces an important aspect of PSL: atoms take
truth values in the [0, 1] interval, capturing the degree of
certainty of the inference. In the above rule, high name
similarity results in greater confidence that two mentions are
the same. However, we also wish to penalize pairs of mentions
with dissimilar names from matching, for which we introduce
the rule using the logical not (¬):

¬SIMNAMEJW (m1,m2)⇒ ¬SAME(m1,m2) .

While we present these rules for a generic SIMNAME simi-
larity function, our model introduces several name similarities
for first, last, and middle names (we do not assume last names
are the same across mentions). Similarly, our model can easily
support alternative similarity metrics, such as Monge Elkan or
Soundex [27], or similarities on combinations of names (e.g.,
first, middle, last).

2) Personal Information Similarity Rules: Beyond the name
attributes of a mention, there are often additional attributes
provided in reports that are useful for matching. For example,
age is an important feature for entity resolution in family
trees, since individuals may share a name across different
generations. We introduce the following rule for age:

SIMAGE(m1,m2)⇒ SAME(m1,m2) .

The predicate SIMAGE(m1,m2) takes values in the interval
[0, 1] and is computed as the ratio of the smallest over the
largest value. While attributes like age have influence in
matching, other attributes cannot be considered as evidence
to matching but they are far more important in disallowing
matches between the mentions. For example, same gender can-
not be an indicator that two mentions are co-referent, however,
different gender is a strong evidence that two mentions are
not co-referent. To this end, we introduce rules that prevent
mentions from matching when attributes differ:

¬SIMAGE(m1,m2)⇒ ¬SAME(m1,m2)

¬EQGENDER(m1,m2)⇒ ¬SAME(m1,m2)

¬EQLIVING(m1,m2)⇒ ¬SAME(m1,m2) .

We note that the predicates EQGENDER(m1,m2) and
EQLIVING(m1,m2) have binary-valued atoms.

3) Relational Similarity Rules: Although attribute similar-
ities provide useful features for entity resolution, in problem
settings such as familial networks, relational features are
necessary for matching. Relational features can be introduced
in a multitude of ways. One possibility is to incorporate purely
structural features, such as the number and types of relation-
ships for each mention. For example, given a mention with two
sisters and three sons and a mention with three sisters and three
sons, we could design a similarity function for these relations.
However, practically this approach lacks discriminative power
because there are often mentions that have similar relational
structures (e.g., having a mother) that refer to different entities.
To overcome the lack of discriminative power, we augment



structural similarity with a matching process. For relationship
types that are surjective, such as mother or father, the matching
process is straightforward. We introduce a rule:

SIMMOTHER(m1,m2)⇒ SAME(m1,m2) .

SIMMOTHER may have many possible definitions. In this
work, SIMMOTHER is equal to the maximum of the Lev-
enshtein and Jaro-Winkler similarities of the first names.
However, when a relationship type is multi-valued, such as
sister or son, a more sophisticated matching of the target
individuals is required. Given a relation type t and possibly co-
referent mentions mi

1,m
j
2, we find all entities Mx = {mi

x :
rt(m

i
1,m

i
x) ∈ Qi

1} and My = {mj
y : rt(m

j
2,m

j
y) ∈ Qj

2}.
Now we must define a similarity for the sets Mx and My ,
which in turn will provide a similarity for mi

1 and mj
2. The

similarity function we use is:

SIMt(m1,m2) =
1

|Mx|
∑

mx∈Mx

max
my∈My

SIMNAME(mx,my) .

For each mx (an individual with relation t to m1), this compu-
tation greedily chooses the best my (an individual with relation
t to m2). In our computation, we assume (without loss of
generality, assuming symmetry of the similarity function) that
|Mx| < |My|. While many possible similarity functions can be
used for SIMNAME, we take the maximum of the Levenshtein
and Jaro-Winkler similarities of the first names in our model.

Our main goal in introducing these relational similarities is
to incorporate relational evidence that is compatible with sim-
pler, baseline models. While more sophisticated than simple
structural matches, these relational similarities are much less
powerful than the transitive relational similarities supported by
PSL, which we introduce in the next section.

4) Transitive Relational (Similarity) Rules: The rules that
we have investigated so far can capture personal and relational
similarities but they cannot identify similar persons in a
collective way. To make this point more clear, consider the
following observation: when we have high confidence that two
persons are the same, we also have a stronger evidence that
their associated relatives, e.g., father, are also the same. We
encode this intuition with rules of the following type:

REL(Father,m1,ma) ∧ REL(Father,m2,mb)

∧ SAME(m1,m2)⇒ SAME(ma,mb) .

The rule above works well with surjective relationships,
since each person can have only one (biological) father. When
the cardinality is larger, e.g., sister, our model must avoid
inferring that all sisters of two respective mentions are the
same. In these cases we use additional evidence, i.e., name
similarity, to select the appropriate sisters to match, as follows:

REL(Sister,m1,ma) ∧ REL(Sister,m2,mb)

∧ SAME(m1,m2) ∧ SIMNAME(ma,mb)⇒ SAME(ma,mb) .

Just as in the previous section, we compute SIMNAME by
using the maximum of the Jaro-Winkler and Levenshtein
similarities for first names. For relationships that are one-to-
one we can also introduce negative rules which express the
intuition that two different persons should be connected to

different persons given a specific relationship. For example,
for a relationship such as spouse, we can use a rule such as:

REL(Spouse,m1,ma) ∧ REL(Spouse,m2,mb)

∧ ¬SAME(m1,m2)⇒ ¬SAME(ma,mb) .

However, introducing similar rules for one-to-many relation-
ships is inadvisable. To understand why, consider the case
where two siblings do not match, yet they have the same
mother, whose match confidence should remain unaffected.

5) Bijection and Transitivity Rules: Our entity resolution
task has several natural constraints across reports. The first
is bijection, namely that a mention mi

x can match at most
one mention, mj

y from another report. Before introducing
the rule, we define the predicate FROMREPORT (abbreviated
FR(mi,Ri)) which filters individuals from a particular partic-
ipant report (e.g., mi

x ∈Mi). According to the bijection rule,
if mention ma from report R1 is matched to mention mb from
report R2 then m1 cannot be matched to any other mention
from report R2:

FR(ma,R1) ∧ FR(mb,R2) ∧ FR(mc,R2)

∧ SAME(ma,mb)⇒ ¬SAME(ma,mc) .

Note that this bijection is soft, and does not guarantee a single,
exclusive match for ma, but rather attenuates the confidence
in each possible match modulated by the evidence for the
respective matches. A second natural constraint is transitivity,
which requires that if mi

a and mj
y are the same, and mentions

mj
y and mk

c are the same, then mentions mi
a and mk

c should
also be the same. We capture this constraint as follows:

FR(ma,R1) ∧ FR(mb,R2) ∧ FR(mc,R3)

∧ SAME(ma,mb) ∧ SAME(mb,mc)⇒ SAME(ma,mc) .

6) Prior Rule: Entity resolution is typically an imbalanced
classification problem, meaning that most of the mention pairs
are not co-referent. We can model our general belief that two
mentions are likely not co-referent, using the prior rule:

¬SAME(m1,m2) .

7) Flexible Modeling: We reiterate that in this section we
have only provided representative rules used in our PSL model
for entity resolution. Moreover, a key feature of our model
is the flexibility and the ease with which it can be extended
to incorporate new features. For example, adding additional
attributes, such as profession or location, is easy to accomplish
following the patterns of Subsection IV-B2. Incorporating
additional relationships, such as cousins or friends is simply
accomplished using the patterns in Subsections IV-B3 and
IV-B4. Our goal has been to present a variety of patterns that
are adaptable across different datasets and use cases.

C. Learning the PSL Model
Given the above model, we use observational evidence

(similarity functions and relationships) and variables (potential
matches) to define a set of ground rules. Each ground rule
is translated into a hinge-loss potential function of the form
(2) defining a Markov random field, as in (1) (Section IV-A).
Then, given the observed values X our goal is to find the



most probable assignment to the unobserved variables Y by
performing joint inference over interdependent variables.

As we discussed in IV-A, each of the first-order rules
introduced in the previous section is associated with a non-
negative weight wj in Equation 1. These weights determine
the relative importance of each rule, corresponding to the
extent to which the corresponding hinge function φj alters the
probability of the data under Equation 1. A higher weight wj

corresponds to a greater importance of information source j
in the entity resolution task. We learn rule weights using Bach
et al.’s [3] approximate maximum likelihood weight learning
algorithm, using a held-out training set. Finally, since the
output of the PSL model is a soft-truth value for each pair
of mentions, to evaluate our matching we choose a threshold
to make a binary match decision. We choose the optimal
threshold on a held-out development set to maximize the F-
measure score, and use this threshold when classifying data in
the test set.

D. Satisfying Matching Restrictions
One of the key constraints in our model is a bijection

constraint that requires that each mention can match at most
one mention in another report. Since the bijection rule in PSL
is soft, in some cases, we may get multiple matching mentions
for a report. To enforce this restriction, we introduce a greedy
1:1 matching step. We use a simple algorithm that first sorts
output matchings by the truth value of the SAME(mi

x,m
j
y)

predicate. Next, we iterate over this sorted list of mention
pairs, choosing the highest ranked pair for an entity, (mi

x,m
j
y).

We then remove all other potential pairs, ∀mi
a,a6=x(m

i
a,m

j
y)

and ∀mj
b,b 6=y(m

i
x,m

j
b), from the matching. This approach is

simple to implement, efficient, and can potentially improve
model performance, as we will discuss in our experiments.

V. EXPERIMENTAL VALIDATION

A. Datasets and Baseline
For our experimental evaluation we use two datasets, a

clinical dataset provided by the National Institutes of Health
(NIH) [12] and a public dataset crawled from the structured
knowledge repository, Wikidata.1 We provide summary statis-
tics for both datasets in Table I.

The NIH dataset was collected by interviewing 497 patients
from 162 families and recording family medical histories.
For each family, 3 or 4 patients were interviewed, and each
interview yielded a corresponding ego-centric view of the
family tree. Patients provided first and second degree relations,
such as parents and grandparents. In total, the classification
task requires determining co-reference for about 300, 000 pairs
of mentions. The provided dataset was manually annotated by
at least two coders, with reconciliation of differences. Only
1.6% of the potential pairs are co-referent, resulting in a
severely imbalanced classification, which is common in entity
resolution scenarios.

The Wikidata dataset was generated by crawling part of the
Wikidata2 knowledge base. More specifically, we generated

1Code and data available at: https://github.com/pkouki/icdm2017.
2https://www.wikidata.org/

Dataset NIH Wikidata
No. of families 162 419
No. of family trees 497 1,844
No. of mentions 12,111 8,553
No. of 1st degree relationships 46,983 49,620
No. of 2nd degree relationships 67,540 0
No. of pairs for comparison 300,547 174,601
% of co-referent pairs 1.6% 8.69%

TABLE I: Datasets description

a seed set of 419 well-known politicians or celebrities, e.g.,
“Barack Obama”.3 For each person in the seed set, we re-
trieved attributes from Wikidata including their full name (and
common variants), age, gender, and living status. Wikidata
provides familial data only for first-degree relationships, i.e.,
siblings, parents, children, and spouses. Using the available
relationships, we also crawled Wikidata to acquire attributes
and relationships for each listed relative. This process resulted
in 419 families. For each family, we have a different number
of family trees (ranging from 2 to 18) with 1, 844 family trees
in total, and 175, 000 pairs of potentially co-referent mentions
(8.7% of which are co-referent). Mentions in Wikidata are
associated with unique identifiers, which we use as ground
truth. In the next section, we describe how we add noise to
this dataset to evaluate our method.

We compare our approach to state-of-the-art classifiers that
are capable of providing the probability that a given pair of
mentions is co-referent. Probability values are essential since
they are the input to the greedy 1-1 matching restrictions algo-
rithm. We compare our approach to the following classifiers:
logistic regression (LR), logistic model trees (LMTs), and sup-
port vector machines (SVMs). For LR we use a multinomial
logistic regression model with a ridge estimator [5] using the
implementation and improvements of WEKA [11] with the
default settings. For LMTs we use Weka’s implementation
[19] with the default settings. For SVMs we use Weka’s
LibSVM library [6], along with the functionality to estimate
probabilities. To select the best SVM model we follow the
process described by Hsu et al. [15]: we first find the kernel
that performs best, which in our case was the radial basis
function (RBF). We then perform a grid search to find the
best values for C and γ parameters. The starting point for the
grid search was the default values given by Weka, i.e., C=1
and γ=1/(number of attributes), and we continue the search
with exponentially increasing/decreasing sequences of C and
γ. We note however that, unlike our model, none of these off-
the-shelf classifiers can incorporate transitivity or bijection.

B. Experimental Setup

We evaluate our entity resolution approach using the met-
rics of precision, recall, and F-measure for the positive
(co-referent) class which are typical for entity resolution
problems [7]. For all reported results we use 5-fold cross-
validation, with distinct training, development, and test sets.
Folds are generated by randomly assigning each of the
162 (NIH) and 419 (Wikidata) families to one of five par-

3https://www.wikidata.org/wiki/Q76



titions, yielding folds that contain the participant reports for
approximately 32 (NIH) and 83 (Wikidata) familial networks.

The NIH dataset is collected in a real-world setting where
information is naturally incomplete and erroneous, and at-
tributes alone are insufficient to resolve the entities. However,
the Wikidata resource is heavily curated and assumed to
contain no noise. To simulate the noisy conditions of real-
world datasets, we introduced additive Gaussian noise to the
similarity scores. Noise was added to each similarity metric
described in the previous section (e.g., first name Jaro-Winkler,
age ratio). In our full experiments we considered varying
levels of noise, finding higher noise correlated with lower
performance. Due to space limitations, results are presented
only for noise terms drawn from a N(0, 0.16) distribution.

In each experiment, for PSL, we use three folds for training
the model weights, one fold for choosing a binary classifica-
tion threshold, and one fold for evaluating model performance.
To train the weights, we use PSL’s default values for the two
parameters: number of iterations (equal to 25) and step size
(equal to 1). For SVMs, we use three folds for training the
SVMs with the different values of C and γ, one fold for
choosing the best C and γ combination, and one fold for
evaluating model performance. For LR and LMTs we use
three folds for training the models with the default parameter
settings and one fold for evaluating the models. We train,
validate, and evaluate using the same splits for all models. We
report the average precision, recall, and F-measure together
with the standard deviation across folds.

C. Experiments

For our PSL model, we start with a simple feature set using
only name similarities (see Subsection IV-B1), transitivity and
bijection soft constraints (see Subsection IV-B5), and a prior
(see Subsection IV-B6). We progressively enhance the model
by adding attribute similarities computed based on personal
information, relational similarities, and transitive relationships.
Finally, since our dataset poses the constraint that each person
from one report can be matched with at most one person
from another report, we consider only solutions that satisfy
this constraint. To ensure that the output is a valid solution,
we apply the greedy 1:1 matching restriction algorithm (see
Subsection IV-D) on the output of the each model. For each
of the experiments we also ran baseline models that use the
same information as the PSL models in the form of features.
Unlike our models implemented within PSL, the models from
the baseline classifiers do not support collective reasoning,
i.e., applying transitivity and bijection is not possible in the
baseline models. However, we are able to apply the greedy
1:1 matching restriction algorithm on the output of each of
the classifiers for each of the experiments to ensure that we
provide a valid solution. We ran the following experiments:
Names: A PSL model with rules only on name similarities, as
discussed in Section IV-B1. We also ran LR, LMTs, and SVMs
models that use as features the first, middle, and last name
similarities based on Levenshtein and Jaro-Winkler measures.
Names + Personal Info: We enhance Names by adding
rules about personal information similarities, as discussed

in Section IV-B2. For the baselines, we add corresponding
features for age similarity, gender, and living status. This is
the most complex feature set that can be supported without
using the normalization procedure we introduce in Section III.
Names + Personal + Relational Info (1st degree): For
this model and all subsequent models we perform normal-
ization to enable the use of relational evidence for entity
resolution. We present the performance of two PSL models.
In the first model, PSL(R1), we add first degree relational
similarity rules, as discussed in Section IV-B3. First degree
relationships are: mother, father, daughter, son, brother, sister,
spouse. In the second model, PSL(R1TR1), we extend the
PSL(R1) by adding first-degree transitive relational rules, as
discussed in Section IV-B4. For the baselines, we extend the
previous models by adding first-degree relational similarities
as features. However, it is not possible to include features
similar to the transitive relational rules in PSL, since these
models do not support collective reasoning.
Names + Personal + Relational Info (1st + 2nd degree): As
above, we evaluate the performance of two PSL models. In
the first experiment, PSL(R12TR1), we enhance the model
PSL(R1TR1) by adding second-degree relational similarity
rules, as discussed in Section IV-B3. Second degree rela-
tionships are: grandmother, grandfather, granddaughter, grand-
son, aunt, uncle, niece, nephew. In the second experiment,
PSL(R12TR12), we enhance PSL(R12TR1) by adding second-
degree transitive relational similarity rules, as discussed in
Section IV-B4. For the baselines, we add the second-degree
relational similarities as features. Again, it is not possible to
add features that capture the transitive relational similarity
rules. Since Wikidata dataset does not provide second degree
relations, we do not report experimental results for this case.

D. Discussion

We present our results in Table II. For each experiment,
we denote with bold the best performance in terms of the F-
measure. We present the results for both our method and the
baselines and only for the positive class (co-referent entities).
Due to the imbalanced nature of the task, performance on
non-matching entities is similar across all approaches, with
precision varying from 99.6% to 99.9%, recall varying from
99.4% to 99.9%, and F-measure varying from 99.5% to 99.7%
for the NIH dataset. For the Wikidata, precision varies from
98.7% to 99.8%, recall varies from 98.9% to 99.9%, and F-
measure varies from 99.5% to 99.7%. Next, we summarize
some of our insights from the results of Table II.
PSL models universally outperform baselines: In each
experiment PSL outperforms all the baselines using the same
feature set. With one exception (for NIH, Names + Personal
Info), PSL produces a statistically significant improvement in
F-measure as measured by a paired t-test with α = 0.05. Of the
baselines, LMTs perform best in all experiments and will be
used for illustrative comparison. When using name similarities
only (Names models in Table II) PSL outperforms LMTs by
2.3% and 3.5% (absolute value) for the NIH and the Wikidata
dataset accordingly. When adding personal information simi-
larities (Names + Personal Info), PSL outperforms LMTs by



NIH Wikidata

Method Precision(SD) Recall(SD) F-measure(SD) Precision(SD) Recall(SD) F-measure(SD)

Names

LR 0.871 (0.025) 0.686 (0.028) 0.767 (0.022) 0.905 (0.015) 0.598 (0.022) 0.720 (0.018)
SVMs 0.870 (0.022) 0.683 (0.027) 0.765 (0.020) 0.941 (0.017) 0.607 (0.034) 0.738 (0.026)
LMTs 0.874 (0.020) 0.717 (0.027) 0.787 (0.022) 0.926 (0.011) 0.660 (0.034) 0.770 (0.023)
PSL 0.866 (0.021) 0.761 (0.028) 0.810 (0.023)* 0.870 (0.019) 0.751 (0.038) 0.805 (0.020)*

Names +
Personal Info

LR 0.968 (0.010) 0.802 (0.035) 0.877 (0.024) 0.953 (0.015) 0.713 (0.032) 0.815 (0.022)
SVMs 0.973 (0.008) 0.832 (0.025) 0.896 (0.016) 0.970 (0.011) 0.723 (0.034) 0.828 (0.023)
LMTs 0.966 (0.011) 0.859 (0.018) 0.909 (0.015) 0.960 (0.014) 0.745 (0.037) 0.838 (0.022)
PSL 0.937 (0.016) 0.893 (0.019) 0.915 (0.015) 0.909 (0.025) 0.813 (0.040) 0.857 (0.017)*

Names +
Personal +
Relational Info
(1st degree)

LR 0.975 (0.011) 0.804 (0.035) 0.881 (0.025) 0.962 (0.013) 0.756 (0.028) 0.846 (0.015)
SVMs 0.983 (0.008) 0.835 (0.026) 0.903 (0.018) 0.975 (0.012) 0.776 (0.035) 0.864 (0.019)
LMTs 0.961 (0.013) 0.856 (0.028) 0.905 (0.020) 0.967 (0.015) 0.785 (0.037) 0.866 (0.019)
PSL(R1) 0.932 (0.013) 0.888 (0.030) 0.909 (0.018) 0.915 (0.017) 0.867 (0.029) 0.890 (0.010)
PSL(R1TR1) 0.956 (0.006) 0.924 (0.024) 0.940 (0.014)* 0.914 (0.016) 0.880 (0.018) 0.896 (0.006)*

Names +
Personal +
Relational Info
(1st + 2nd

degree)

LR 0.970 (0.012) 0.807 (0.051) 0.880 (0.032) - - -
SVMs 0.985 (0.006) 0.856 (0.029) 0.916 (0.019) - - -
LMTs 0.975 (0.008) 0.872 (0.016) 0.921 (0.011) - - -
PSL(R12TR1) 0.958 (0.005) 0.926 (0.021) 0.942 (0.014) - - -
PSL(R12TR12) 0.961 (0.011) 0.931 (0.020) 0.946 (0.010)* - - -

TABLE II: Performance of PSL and baseline classifiers with varying types of rules/features. Numbers in parenthesis indicate
standard deviations. Bold shows the best performance in terms of F-measure for each feature set. Statistical significance at
α = 0.05 when using paired t-test is denoted by *.
0.6% and 1.9% for the NIH and the Wikidata accordingly, al-
though the improvement for NIH is not statistically significant.
For the experiment Names + Personal + Relational Info 1st

degree, the PSL model that uses both relational and transitive
relational similarity rules, PSL(R1TR1), outperforms LMTs
by 3.5% for the NIH and 3.0% for the Wikidata. Finally,
for the NIH dataset, for the experiment that additionally uses
relational similarities of second degree, the best PSL model,
PSL(R12TR12), outperforms LMTs by 2.5%.
Name similarities are not enough: When we incorporate
personal information similarities (Names + Personal Info)
on top of the simple Names model that uses name similarities
only, we get substantial improvements for the PSL model, i.e.,
10.5% in F-measure. The same observation is also true for all
baseline models, with SVMs getting the most benefit out of the
addition of personal information with an increase of 13.1%.
First-degree relationships help most in low noise scenarios:
We found that reliable relational evidence improves perfor-
mance, but noisy relationships can be detrimental. In the NIH
dataset, incorporating first-degree relationships using the sim-
ple relational similarity function defined in Subsection IV-B3
decreases performance slightly for the PSL and the LMTs
models (0.6% and 0.4% respectively). For LR and SVMs,
F-measure increases slightly (0.4% and 0.7% respectively).
However, for the Wikidata, the addition of simple relational
similarities increased F-measure by 3.3% for PSL(R1), 2.8%
for LMTs, 3.6% for SVMs, and 3.1% for LR. We believe that
the difference in the effect of the simple relational features
is due to the different noise in the two datasets. NIH is a
real-world dataset with incomplete and unreliable information,
while Wikidata is considered to contain no noise. As a result,
we believe that both the baseline and PSL models are able to
cope with the artificially introduced noise, while it is much
more difficult to deal with real-world noisy data.
Collective relations yield substantial improvements: When
we incorporate collective, transitive relational rules to the

PSL(R1) model resulting to the PSL(R1TR1) model – a
key differentiator of our approach – we observe a 3.1%
improvement in F-measure for the NIH dataset which is a
result of an increase of 3.6% for the recall and 2.4% for
the precision. Adding collective rules allows decisions to
be propagated between related pairs of mentions, exploiting
statistical signals across the familial network to improve recall.
The Wikidata also benefits from collective relationships, but
the 0.6% improvement in F-measure score is much smaller.
For this cleaner dataset, we believe that simple relational
similarity rules were informative enough to dampen the impact
of transitive relational similarity rules. As a result, these rules
are not as helpful as in the more noisy NIH dataset.
Second-degree similarities improves performance: The ad-
dition of simple relational similarities from second degree
relationships, such as those available in the NIH dataset,
yield improvements in all models except LR. For our ap-
proach, PSL(R12TR1), slightly improves the PSL(R1TR1)
model (0.2% for F-measure), while the addition of second-
degree transitive relational features (model PSL(R12TR12))
further improves slightly the performance by 0.4%. When
adding second-degree relationships, we observe a pronounced
increase in the F-measure for two baselines (1.6% for LMTs
and 1.3% for SVMs), while LR has a small drop of 0.1%.
Precision-recall balance can change using a different crite-
rion for the threshold value: As we discussed in Section IV-C
for the PSL model we choose the optimal threshold to max-
imize the F-measure score. This learned threshold achieves a
precision-recall balance that favors recall at the expense of
precision. For both datasets, our model’s recall is significantly
higher than all the baselines in all the experiments. However,
since PSL outputs soft truth values, changing the threshold
selection criteria in response to the application domain (e.g.,
prioritizing cleaner matches over coverage) can allow the
model to emphasize precision over recall.
Matching restrictions always improves F-measure: We note



Fig. 3: An analysis of the scalability of our system. As the
number of potentially co-referent entity pairs increases, the
execution time of our model grows linearly for both datasets.

that valid solutions in our entity resolution setting require that
an entity matches at most one entity in another ego-centric
network. To enforce this restriction, we apply a 1-1 matching
algorithm on the raw output of all models (Section IV-D).
Applying matching restrictions adjusts the precision-recall
balance of all models. For both PSL and the baselines across
both datasets, when applying the 1-1 matching restriction
algorithm, we observe a sizable increase in precision and a
marginal drop in recall. This pattern matches our expectations,
since the algorithm removes predicted co-references (harming
recall) but is expected to primarily remove false-positive pairs
(helping precision). Overall, the application of the 1-1 match-
ing restrictions improves the F-measure for all algorithms and
all datasets. Since the results before the 1-1 matching do
not represent valid solutions and it is not straightforward to
compare across algorithms we do not report them here.
PSL scales linearly with instances: One motivation for
choosing PSL to implement our entity resolution model was
the need to scale to large datasets. To validate the scalability
of our approach, we vary the number of instances, consisting
of pairs of candidate co-referent entities, and measure the
execution time of inference. In Figure 3 we plot the average
execution time relative to the number of candidate entity pairs.
Our results indicate that our model scales almost linearly
with respect to the number of comparisons. For the NIH
dataset, we note one prominent outlier, for a family with
limited relational evidence resulting in lower execution time.
Conversely, for the Wikidata, we observe two spikes which
are caused by families that contain relatively dense relational
evidence compared to similar families. We finally note that
we expect these scalability results to hold as the datasets get
bigger since the execution time depends on the number of
comparisons and the number of relations per family.

VI. RELATED WORK

There is a large body of prior work in the general area
of entity resolution [7]. In this work we propose a collective

approach that makes extensive use of relational data. In the
following we review collective relational entity resolution
approches which according to Rastogi et al. [24] can be either
iterative or purely-collective.

For the iterative collective classification case, Bhattacharya
and Getoor [4] propose a method based on greedy clustering
over the relationships. This work considers only one single
relation type, while we consider several types. Dong et al. [9]
propose another iterative approach which combines contextual
information with similarity metrics across attributes. In our
approach, we perform both reference and relation enrichment,
by applying inversion and imputation. Finally, Kalashnikov
and Mehrotra [16] propose an approach for the reference
disambiguation problem where the entities are already known.
In our case, we do not know the entities beforehand.

In the case of purely collective approaches, Arasu et al. [1]
propose the Dedupalog framework for collective entity res-
olution with both soft and hard constraints. Dedupalog is
well-suited for datasets having the need to satisfy several
matching restrictions. In our case, we have several soft rules
with a smaller number of constraints. In another approach,
Culotta and McCallum [8] design a conditional random field
model incorporating relationship dependencies. In this work
too, the number of relationship types considered is small.
Finally, Singla and Domingos [25] combine first-order logic
and Markov random fields to perform collective classification.
The proposed Markov Logic Networks (MLNs) operate on
undirected graphical models using a first-order logic as their
template language, like PSL. However, the predicates take
only boolean values, while in PSL the predicates take soft
truth values in the range [0, 1] which is more appropriate for
representing notions such as name similarities. Additionally,
according to related work [3], HL-MRFs can achieve improved
performance in much less time compared to MLNs.

Overall, the purely collective approaches come with a high
computational cost for performing probabilistic inference. As
a result, they cannot scale to large datasets unless we use
techniques that make the EM algorithm scalable [24]. Our
approach uses PSL which ensures scalable and exact inference
by solving a convex optimization problem in parallel. Speed
and scalability is of paramount importance in entity resolution
and in particular when we run the prediction task collectively
using transitivity and bijection rules.

Regarding the problem of entity resolution in familial
networks, we recently proposed a first approach [18]. The
problem setting is the same as in the current work, but
the approach is non-collective using well-studied classifiers
enhanced with features capturing relational similarity. In this
work we propose a more sophisticated collective approach to
the familial entity resolution problem.

Additionally, there are some works from the ontology
alignment and knowledge graph identification domains that
are close to our approach. Suchanek et al. [26] propose
a probabilistic approach for ontology alignment. The tool
accepts as input two ontologies and distinguishes the same
relations, classes, and instances. As a result, the approach
does not take into account transitivity and bijection constraints,



which are key features in the familial networks. Finally, Pujara
and Getoor [23] use PSL to design a general mechanism
for entity resolution in knowledge graphs, a setting with
a similarly rich relational structure. Their work considers
entity resolution within and between graphs. However, familial
networks have unique characteristics and constraints that differ
substantially from knowledge graphs, and in particular they do
not explicitly consider the problem of entity resolution across
several subgraphs.

VII. CONCLUSIONS AND FUTURE WORK

Entity resolution in familial networks poses several chal-
lenges, including heterogeneous relationships that introduce
collective dependencies between decisions and inaccurate at-
tribute values that undermine classical approaches. In this
work, we propose a scalable collective approach based on
probabilistic soft logic that leverages attribute similarities,
relational information, and logical constraints. A key differ-
entiator of our approach is the ability to support bijection and
different types of transitive relational rules that can model
the complex familial relationships. Moreover, our method
is capable of using training data to learn the weight of
different similarity scores and relational features, an important
ingredient of relational ER. In our experimental evaluation,
we demonstrated that our framework can effectively combine
different signals, resulting in improved performance over state-
of-the-art approaches on two datasets.

In this paper, we motivate the importance of our approach
with an application for resolving mentions in healthcare
records. However, the problem of entity resolution in richly
structured domains has many additional applications. For
example, many companies4 provide genealogical discovery
services, which require a similar entity resolution process. We
also foresee applications in social networks, where the problem
of linking user accounts across several social platforms in
the presence of a diverse set of relationships (e.g., friends,
followers, followees, family cycles, shared groups), ambiguous
names, and collective constraints such as bijection and transi-
tivity, provide a similar set of opportunities and challenges.

In future work, we plan to apply our approach to a broader
set of problems and discuss general strategies for multire-
lational entity resolution. Additionally, we plan to explore
structured output learning techniques [22] inside PSL. Such
techniques can directly consider the matching constraints
during the learning phase instead of post processing the
classification results. We also plan to explore temporal re-
lations, e.g. ex-wife, and more complex relationships, e.g.
adopted child. Finally, in certain cases, we might inadvertently
introduce inaccurate relations when following the approach of
Section III. To address this, we plan to expand our work to
account for uncertainty in the relational normalization step by
assuming a probability assigned to each populated relationship
instead of the hard values that we currently assign.

4ancestry.com, genealogy.com, familysearch.org
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