
ABSTRACT

Title of dissertation: PROBABILISTIC MODELS FOR SCALABLE
KNOWLEDGE GRAPH CONSTRUCTION

Jay Pujara,
Doctor of Philosophy, 2016

Dissertation directed by: Professor Lise Getoor
Department of Computer Science

In the past decade, systems that extract information from millions of Internet docu-

ments have become commonplace. Knowledge graphs – structured knowledge bases that

describe entities, their attributes and the relationships between them – are a powerful tool

for understanding and organizing this vast amount of information. However, a significant

obstacle to knowledge graph construction is the unreliability of the extracted information,

due to noise and ambiguity in the underlying data or errors made by the extraction system

and the complexity of reasoning about the dependencies between these noisy extractions.

My dissertation addresses these challenges by exploiting the interdependencies between

facts to improve the quality of the knowledge graph in a scalable framework. I introduce

a new approach called knowledge graph identification (KGI), which resolves the entities,

attributes and relationships in the knowledge graph by incorporating uncertain extractions

from multiple sources, entity co-references, and ontological constraints. I define a proba-

bility distribution over possible knowledge graphs and infer the most probable knowledge

graph using a combination of probabilistic and logical reasoning. Such probabilistic mod-

els are frequently dismissed due to scalability concerns, but my implementation of KGI

maintains tractable performance on large problems through the use of hinge-loss Markov

random fields, which have a convex inference objective. This allows the inference of

large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To fur-

ther scale the solution, I develop a distributed approach to the KGI problem which runs

in parallel across multiple machines, reducing inference time by 90%. Finally, I extend

my model to the streaming setting, where a knowledge graph is continuously updated by

incorporating newly extracted facts. I devise a general approach for approximately up-

dating inference in convex probabilistic models, and quantify the approximation error by

defining and bounding inference regret for online models. Together, my work retains the

attractive features of probabilistic models while providing the scalability necessary for

large-scale knowledge graph construction. These models have been applied on a number

of real-world knowledge graph projects, including the NELL project at Carnegie Mellon

and the Google Knowledge Graph.

PROBABILISTIC MODELS FOR SCALABLE
KNOWLEDGE GRAPH CONSTRUCTION

by

Jay Pujara

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:

Professor Lise Getoor, University of Maryland, Chair
Professor William W. Cohen, Carnegie Mellon University
Professor Hector Corrada-Bravo, University of Maryland
Professor Hal Daumé III, University of Maryland
Prof. Philip Resnik, University of Maryland

c© Copyright by
Jay Pujara

2016

Dedication

Thats it. The lover writes, the believer hears,
The poet mumbles and the painter sees,
Each one, his fated eccentricity,
As a part, but part, but tenacious particle,
Of the skeleton of the ether, the total
Of letters, prophecies, perceptions, clods
Of color, the giant of nothingness, each one
And the giant ever changing, living in change.
–Wallace Stevens, from A Primitive Like an Orb

ii

Acknowledgments

As a lover of wordplay, I would sometimes imagine that scholarship was, instead of
a task undertaken in the windowless offices of the AV Williams building, an actual ship – a
tall schooner, plowing through the dark, mysterious seas of Research with its crisp, white
sails billowing in the wind. However, if the metaphor has any truth to it, this ship would
have one (or possibly many) leaks of unknown origin, the lines would be tangled in an
irredeemable mess, and it would be well off course and weeks behind schedule. Amidst
those sinking realizations, I would often temper my despair by reflecting how thankful I
was that I was not on this ship alone.

My advisor Lise Getoor deserves most of the credit for keeping me from running
aground. I can’t say why she thought I was a good bet when I arrived at her office in March
2010 after crossing a continent and navigating the Metrobus system: sweaty, unkempt,
carrying a 90 liter hiking pack and babbling disconnectedly about half-baked research
ideas. Whatever her reasons, I’m extremely thankful to have the opportunity to work with
her. Lise has been patient, allowing me the time to explore many avenues that turned out to
be dead ends and forgiving many late weekly reports; encouraging, battling my skepticism
and pessimism when confronted with frustrating datasets or bleak experimental results;
and dedicated, investing her nights and weekends to sending meticulously (and often
distressingly) annotated paper drafts in hopes my writing would improve. Above all, I
have been astounded by how much Lise cares about her students and how hard she works
to help them achieve their goals, whatever they may be. Lise has also helped me forge
connections with many of the mentors who have helped me through the course of my
studies.

One of these mentors is William Cohen, who was critical in shaping much of my
work on knowledge graphs. I benefited from William’s deep experience in NLP and
machine learning, his pragmatic approach to slashing through the most troubling Gordian
knots, and his ability to connect me with just the right person to solve my data woes. As a
rule, no matter what problem I brought into a meeting with William, by the end he would
have pointed me in the right direction to make progress. I’m grateful to have had the
opportunity of this collaboration, as well as the opportunity to work with William briefly
at Carnegie Mellon.

I also owe a debt of gratitude to Hal Daumé III. Hal joined the University of Mary-
land at the same time as me (albeit as a professor), and his office was directly across
from the LINQS lab so I’ve been bugging him throughout my entire graduate career. I’m
not sure how to describe Hal’s magic, but every time I walked out of his office I would
feel better, whether it was because I finally understood the optimization problem I’d been
working on for a week, or had a new perspective on the related work for an idea I’d
encountered, or simply because he helped defuse my anxiety and gave me fresh hope.

Many of my most formative experiences as a researcher have been due to all I have
learned as a member of the LINQS lab. I can’t enumerate all of the ways being a member

iii

of LINQS has contributed to my maturation as a researcher, but it spans everything from
the weekly reading group to nightly Skeeball sessions in South Lake Tahoe during the
NIPS conferences. While what I’ve learned is hard to list, the wonderful people I’ve had
the opportunity to learn from comes readily to mind. I’d like to thank the various brilliant
postdocs who have been part of the group and whose particular expertise I’ve benefited
from: Jimmy Foulds, Bert Huang, Angelika Kimmig, Stanley Kok, and Lily Mihalkova.
When I started in LINQS, I was extremely appreciative of the sage advice and guidance of
the senior students: Mustafa Bilgic, Matthias Broecheler, Walaa Eldin Moustafa, Galileo
Namata, Hossam Sharara, and Elena Zheleva. Three other LINQS members joined the
lab the same time I did: Steve Bach, Ben London, and Theo Rekatsinas. I cannot express
how much their friendship, guidance, and help has meant to me. LINQS has also had a
number of visiting students in various forms, with whom I’ve had fruitful collaborations:
Golnoosh Farnadi, Adam Grycner, Eric Norris, and Natalia Diaz Rodriguez. Finally, I
want to thank the next generation of LINQS, who have taught me so much and been
incredibly kind and welcoming: Shobeir Fakhrei, Matthew Howard, Pigi Kouki, Alex
Memory, Hui Miao, Arti Ramesh, Dhanya Sridhar, and Sabina Tomkins – I’m glad to see
them continuing the vibrancy of the LINQS community.

The work in this dissertation would have been impossible without help from a num-
ber of people whose help at critical points greatly influenced the direction of my research.
I’d like to thank the NELL group at Carnegie Mellon, particularly Bryan Kisiel, Jayant
Krishnamurthy, Bhavana Dalvi Mishra, and Anthony Platanios. Serendipitously, working
on NELL allowed me to reconnect with Tom Mitchell, who was my advisor as an un-
dergraduate and Masters student at Carnegie Mellon, and gave me the taste for research
which brought me back to my PhD. I’m grateful to Hector Corrada Bravo and Philip
Resnik for their diligent service on my committee. I’d also like to give special thanks
to Hui Miao, who provided crucial help during my initial explorations of KGI, and Ben
London, who helped me distill my amorphous ideas of how streaming inference should
work into workable theory.

I’ve have had some wonderful mentors at two internships during my graduate
studies. While at Google, I had the great fortune to work with Luna Dong, Evgeniy
Gabrilovich, Curtis Janssen, Kevin Murphy, Wei Zhang, and other members of the Knowl-
edge Vault team. Their support helped me work with the vast real data available at Google
and mater the necessary tools. Similarly, I had an excellent time working at LinkedIn,
enabled with the support of Mathieu Bastian, Christopher Lloyd, Pete Skomoroch, Sal
Uryasev, William Vaughan and the many other generous scientists in Decision Sciences.
I would also like to thank my fellow interns who helped me along the way, in particular:
Tim Althoff, Praveen Bommannavar, Arun Chaganty, Ari Kobren, Matthieu Monsch, and
Karthik Raman.

The ties between the many people I’ve thanked above and my research is fairly di-
rect; I can recall anecdotes about how their help has advanced my ability as a researcher.
However, the key ingredient that allowed me to complete a PhD is the support of my
friends and family. I can’t do justice to all of the people who have been there for me
over the last six years, but I would like to acknowledge at least some of these special
people. First, I want to thank Patrick Barry, Matt Brown, Anna Geisler, Brian Goodman,
Neil Halelamien, Jonathan Hsu, Emily Huang, Karen Knee, Derek Leung, Jennifer Lin,

iv

Danielle Little, Steve and Jane Onorato, Devesh and Masumi Parekh, Kris Popendorf,
Deanna Rubin, Mark Schmit, Vaughn Tan, and Philip Yam – I’ve known most of this
crowd over a decade and despite the separation of time and distance, I’m grateful we’ve
remained connected. One of the intimidating aspects of starting a PhD is often moving
somewhere new and establishing a new social circle. I’ve been lucky enough to find many
great friends over my PhD, but the core circle of friends most responsible for my sanity
by way of spontaneous parties, board games, and trivia night deserves special mention:
Stephen Bach, Cody Buntain, Leigh Cook, Philip and Robin Dasler, Alexis Evangelos,
Julian Grizzard, Renee LaGue, Steven Lee, Piotr Madrizel, Sana Malik, Matthew Mau-
riello, Alex Malozemoff, Brenna McNally, Kris Micinski, Issac Roberts, Karla Saur, and
Amanda Strickler – I couldn’t have done it without you, especially Renee. I’d also like to
thank Brad Dettmer, Nicole Mendoza, Subhodeep Mishra, Soja-Marie Morgens, Dhanya
Sridhar, and Rob Sumner who introduced me to many wonderful people during my travels
to Santa Cruz and Pittsburgh.

Finally, the deepest support I’ve received comes from my family. My siblings,
Shreya and Hirsh, have been incomparable companions, whether tempting the jaws of a
petrified alligator on a hike or playing board games in front of a roaring fire or attempting
a baking adventure. I can’t imagine where I would be without the love and understanding
of my parents Kirit and Smita; they’ve always been there for me, supported me in what-
ever I’ve chosen to undertake, and while they were frequently mystified by what I was
doing and why it was taking so long, they never doubted I would succeed (although often
doubted that I was eating a healthy dinner).

Portions of this work were supported by the National Science Foundation
(NSF), under NSF CAREER grant 0746930 and NSF grant numbers CCF0937094 and
IIS1218488; by the Intelligence Advanced Research Projects Activity (IARPA), via De-
partment of Interior National Business Center (DoI/NBC) contract number D12PC00337;
by the Air Force Research Lab (AFRL) contract #FA8750-10-C-0191; and by research
grants from Google and Yahoo! The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright annotation
thereon.

Disclaimer: The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of NSF, IARPA, DoI/NBC, AFRL, Google, Yahoo!
or the U.S. Government.

v

Table of Contents

1 Introduction 1
1.1 Opportunities . 2
1.2 Challenges . 4
1.3 Approach and Contributions . 5

2 Related Work 8
2.1 The Quest for Knowledge in AI . 9
2.2 Knowledge Representation and Reasoning 10
2.3 Semantic Web: Ontologies and Tools . 12
2.4 Information and Knowledge Extraction 13
2.5 Probabilistic Graphical Models and Structured Prediction 16
2.6 Contemporary Approaches to Knowledge Base Construction 17
2.7 Streaming and Online Inference . 19

3 Problem Formulation for Knowledge Graph Identification 22
3.1 Knowledge Graphs . 22
3.2 Common Errors in Information Extraction 25

3.2.1 Entity Ambiguity . 25
3.2.2 Attribute Errors . 26
3.2.3 Relation Extraction Errors . 28

3.3 Graph Identification . 28
3.4 Adapting Graph Identification to Knowledge Graphs 30

4 Modeling Knowledge Graph Identification 32
4.1 Background: PSL for Knowledge Graphs 32
4.2 Model for Knowledge Graph Identification 35

4.2.1 Representing Uncertain Extractions 36
4.2.2 Entity Resolution . 37
4.2.3 Enforcing Ontological Constraints 38

4.3 Implementing Knowledge Graph Identification with PSL 39
4.4 Experimental Evaluation . 40

4.4.1 Datasets and Experimental Setup 40

vi

4.4.2 Learning Model Weights from Training Data 45
4.4.3 Open-World vs Closed-World Evaluation Setting 47
4.4.4 Results for Closed-World Settings 48
4.4.5 Results for Model Ablation Study 52
4.4.6 Results for Open-World Settings 56

4.5 Discussion . 58

5 Entity Resolution for Knowledge Graphs 60
5.1 Problem Definition . 60

5.1.1 Ambiguity In Candidate Extractions 62
5.1.2 Incorporating New Extractions Into a Knowledge Graph 63
5.1.3 Combining Information From Multiple Knowledge Graphs 64

5.2 Approach . 65
5.2.1 Local and Collective Knowledge Graph Features 65
5.2.2 Knowledge Graph Models at Different Granularity 67

5.3 Modeling Knowledge Graph Entity Resolution 68
5.3.1 Basic Features . 68
5.3.2 New Entity Features . 70
5.3.3 Abstract Knowledge Graph Features 71
5.3.4 Domain-Specific Knowledge Graph Features 73
5.3.5 Synthesis . 77

5.4 Evaluation . 78
5.5 Discussion . 82

6 Scaling Knowledge Graph Identification 84
6.1 Scalability Analysis of Knowledge Graph Identification 84
6.2 Scaling Knowledge Graph Identification with HL-MRFs 86
6.3 Scalability Challenges for Knowledge Graph Identification 87

6.3.1 Partitioning Knowledge Graphs for Distributed Processing 88
6.3.2 Scalability via Ontological Partitioning 89

6.3.2.1 Handling Unevenly Distributed Extractions 91
6.3.2.2 Dealing with Unbalanced Ontologies 93

6.4 Evaluation . 94
6.4.1 Comparison of Partitioning Techniques 95
6.4.2 Assessing the Impact of Partition Size 97

6.5 Discussion . 99

7 Online Collective Inference 101
7.1 Preliminaries . 103
7.2 Inference Regret . 106

7.2.1 Regret Bounds for Strongly Convex Inference 108
7.2.2 The Lipschitz Constant of the Features 114

7.3 Algorithms for Online Inference Activation 115
7.3.1 Background: ADMM Optimization 115
7.3.2 ADMM Features . 117

vii

7.3.3 Activation Algorithms . 118
7.4 Evaluation . 121

7.4.1 Online Collective Classification 122
7.4.2 Collaborative Filtering . 125

7.5 Discussion . 127

8 Conclusion and Future Work 129
8.1 Future Work . 130

A Sample PSL Program for Knowledge Graph Identification 133

B Additional Results for Knowledge Graph Identification 139
B.1 Baseline Results . 139
B.2 Results Excluding Extractor Source Information 142
B.3 Results Excluding Entity Resolution Information 144
B.4 Results Excluding Ontological Information 147
B.5 Results for the Knowledge Graph Identification Model 150
B.6 Results for the Open-World Knowledge Graph Identification Model . . . 152

Bibliography 157

viii

Chapter 1: Introduction

Knowledge has always been an essential ingredient in the quest to build intelligent agents

and systems. Representing information about the world, reasoning about new or unob-

served facts, and learning from the environment are key facets of intelligent behavior. As

a result, the problems of representation, reasoning, and learning are among the defining

challenges of artificial intelligence. Decades of research have lead to significant advances

in each of these areas, and increasingly sophisticated approaches to collecting, organizing,

and employing knowledge.

Concurrently, there has been an explosion of easily accessible machine-readable

data and tools to process this data. For example, trillions of web pages and billions of

videos are now available on the World Wide Web (WWW). Diverse, open-source toolkits

are available to parse and understand text, perform voice recognition on audio, and recog-

nize people and objects in video. The proliferation of publicly available information and

powerful tools to extract this information have created myriad opportunities, particularly

for creating systems that construct knowledge bases that span diverse domains.

However, the problem remains far from solved; many obstacles hinder the useful-

ness of knowledge base construction systems, and the resulting knowledge bases are often

hampered by quality and coverage issues. In this dissertation, I explore the capabilities

1

and limitations of current knowledge base construction systems, enumerate some of the

salient challenges that confront such systems, and develop models to address these chal-

lenges.

1.1 Opportunities

The past two decades have seen enormous changes in the landscape of how informa-

tion is organized, accessed and processed. In contrast to twenty years ago, much of the

information in the world is available in digital form. Content spanning newspapers, peri-

odicals, books, scholarly writings and presentations, musical works, product and business

information, instructional videos, television programs and movies are in digital, machine-

readable formats. Moreover, many personal experiences are also recorded digitally, with

photos, videos, and anecdotes shared using Internet technologies. The advent and popu-

larity of the World Wide Web (WWW) and the ubiquity of personal computing devices

has allowed billions of users access to this vast repository of publicly available informa-

tion.

Simultaneously, academic research has made significant strides in two critical areas:

extracting structured and semantically meaningful information from data and relating this

information to rigorously-defined ontological formalisms. The former has been the work

of the natural language and information extraction communities, and the latter due to the

Semantic Web movement. Together, these advances provide the ingredients for practical

knowledge base construction.

The first of these ingredients is a set of increasingly powerful tools to understand

2

texts and extract information using these features. The natural language processing com-

munity has produced better mechanisms for the key tasks in understanding text: parsing,

part-of-speech tagging, named entity recognition, and semantic role labeling. These tasks

yield the features that enable extracting entities and meaningful relationships between

these entities. Information extraction research has devised a number of ways to use these

features, along with modest amounts of training data, to extract a staggering number of

entities and relationships from text.

Separately, the Semantic Web movement has worked to standardize knowledge rep-

resentation, and provide tools to specify semantically meaningful and interoperable inter-

pretations for information. A key effort of this community has been the definition of

ontologies that serve as the schemas for knowledge. This technology allows relations and

attributes in knowledge bases to be well-defined, and provides a set of constraints that en-

sure the coherency of the knowledge base. These tools have enabled data to be annotated

with general and domain-specific ontological information.

The combination of data, algorithms, standards and systems together provide a

tremendous opportunity for AI research to convert information into knowledge. Build-

ing on work on knowledge representation, the output of these systems holds the potential

to overcome the knowledge acquisition bottleneck. By realizing the pursuit of knowledge,

information retrieval systems will be able to go beyond simply indexing the documents on

the WWW, and instead build web-scale systems capable of understanding the vast troves

of information available on the Internet.

These developments also reflect the growing needs of the billions of people seek-

ing knowledge. Currently every major search engine surfaces structured knowledge for

3

select queries, and every major mobile computing platform includes a digital assistant

feature that attempts to interactively answer user queries with information from a knowl-

edge base. Although these systems currently rely heavily on curated knowledge, the pace

at which data is increasing makes the automatic construction of knowledge bases an in-

evitable necessity.

1.2 Challenges

Although automated knowledge base construction is a growing necessity, addressing this

need poses many challenges. While there is an incredible amount of data available, the

quality of this data varies widely. The vast majority of available data is not annotated

with ontological information, and in some cases the annotations are erroneous. Data that

lacks annotation may also contain errors: the information may be outdated, incorrect, or

malicious. Even when reliable data is available, an information extraction system may

make errors. These many sources of erroneous information can compromise a knowledge

base.

Erroneous information extracted from data is a serious problem, but the preponder-

ance of data also provides a source of robustness. One hope is that by using ontological

knowledge and combining information from many sources, noise in the knowledge base

can be resolved allowing us to produce a coherent knowledge base. However, this solu-

tion comes with its own challenge: scalability. Extraction systems can produce trillions of

candidate facts, and ontological constraints and knowledge can introduce dependencies

between any pair of facts. Resolving errors in a knowledge base requires considering the

4

myriad dependencies between facts.

Finally, even if a system is capable of processing the deluge of facts and dependen-

cies between them, new information is constantly being extracted. A practical knowledge

base system will have to grow and adapt as new information is introduced. However, if the

knowledge base construction is prohibitively costly, incorporating new information may

be impossible. Thus, a knowledge base construction requires a system that can efficiently

update a knowledge base while still remaining robust to errors.

The challenge facing knowledge base construction efforts can be distilled into a

simple requirement: a successful system must be capable of applying the depth and com-

plexity of ontological knowledge to the wealth of data generated by modern information

extraction approaches. Meeting this requirement requires walking a careful balance – the

system must handle the statistical features from information extraction as well as the se-

mantic constrains from ontologies while retaining scalable performance to deal with the

large amount of data. This is the challenge I address in this dissertation.

1.3 Approach and Contributions

My work addresses the challenges confronting knowledge base construction. In this dis-

sertation, I develop a system that is capable of surmounting noisy source information by

incorporating dependencies between facts while remaining scalable, even in a streaming

setting. The structure of this document mirrors the major contributions of my work, por-

tions of which have been published elsewhere (Pujara et al., 2013a,b,c, 2014, 2015a,b).

In Chapter 3, I provide examples of errors found in knowledge bases. I identify the

5

common trends in these failures. I demonstrate that by representing the candidate facts

of a knowledge base as a graph, correcting these errors correspond to the principal tasks

in graph identification. I introduce a model, knowledge graph identification (KGI), that

is capable of resolving errors in extracted knowledge bases. At the end of the chapter, I

pose a hypothesis that KGI will improve the quality of extracted knowledge bases.

I test the hypothesis that knowledge graph identification improves knowledge base

quality in Chapter 4. I first develop a model for knowledge graph identification that

incorporates uncertain extractions and ontological knowledge. I implement this model

as a probabilistic graphical model, and discuss the important design constraints for this

model. I perform extensive experiments to assess the impact of my model design and

validate the KGI hypothesis.

In Chapter 5, I extend knowledge graph identification to address one of the foremost

challenges in knowledge graph construction: entity resolution. I perform an analysis of

the entity resolution problem settings found in knowledge graphs. I identify and formalize

the important features for entity resolution in knowledge graphs. Using these features, I

develop a general, probabilistic approach to entity resolution that addresses the differing

requirements of each problem setting. I implement my entity resolution model for two

different problem settings to demonstrate its generality. In empirical evaluation, I show

the power of my general entity resolution framework across problem settings.

A looming challenge in any discussion of knowledge base construction is scalabil-

ity. In Chapter 6, I explicate the scalability challenges of knowledge graph identification

by performing a complexity analysis for the core problems of KGI. I support the scala-

bility of my implementation of KGI with theoretical analysis and empirical investigation

6

across different problem sizes. I propose a mechanism to improve scalability by distribut-

ing KGI across multiple machines. I implement a parallel KGI system, and demonstrate

that this approach can yield ten-fold improvements in running time without significant

loss of quality.

Another significant obstacle for practical knowledge base construction is the ne-

cessity of constantly updating the knowledge base as new information is extracted. In

Chapter 7, I address the problem of growing and extending an existing knowledge graph

in response to a stream of new extractions. I first formulate the general problem of col-

lective online inference for probabilistic graphical models. To measure the performance

of an online inference, I introduce a new error measure, inference regret. I develop a

bound for inference regret in a regime where inference output is partially updated with

new evidence. I invent a set of algorithms for updating inference that use features from

the inference optimization. In empirical evaluation show that these algorithms reduce

inference regret while maintaining model performance.

7

Chapter 2: Related Work

A number of research areas are related to the work I have undertaken. First, there is a

significant body of work on knowledge representation and reasoning which has enabled

powerful mechanisms for manipulating knowledge. The application of that work is most

clearly seen in the work of the Semantic Web community, which has defined formalisms

and built tools that have many practical applications in knowledge base construction. In

parallel to work on knowledge representation is work on knowledge extraction – pro-

cessing the raw data that can eventually be transformed into knowledge. A number of

other knowledge base construction projects also build on knowledge extraction systems,

although with very different approaches. One particular subproblem in knowledge base

construction, entity resolution, is the subject of decades of research. Orthogonal to the

many methods relevant to knowledge base construction is the question of scalability. A

number of advances in scalable optimization and distributed systems have made large-

scale knowledge graph construction feasible. Finally, one of the key properties of real-

world knowledge graph settings is that the construction task is online and must be updated

to incorporate a stream of new evidence. Several research projects have considered up-

dating inference in probabilistic models, and there are a diverse set of projects that seek

to model dynamic data that I cover briefly.

8

2.1 The Quest for Knowledge in AI

The goal of knowledge base construction has been a key aspect of AI research since its

foundation. Among the earliest work in AI was the introduction of reasoning systems that

used knowledge bases to prove or disprove query assertions (Russell and Norvig, 1995).

One notable project in this pattern was the General Problem Solver (GPS) by Newell

et al. (1959), which took as input an abstract set of knowledge that consisted of logical

formulas and axioms, then used a search-based reasoning approach to decide whether a

given logical statement was true or false. While the generality of GPS was among its

attractive characteristics, this generality also constituted a significant weakness: search-

based reasoning encountered the combinatorial explosion of exponentially many possible

statements (Boden, 2008).

An ongoing theme of the subsequent work in knowledge base construction and

reasoning has been addressing the problems of the combinatorial explosion while still re-

taining the power of knowledge-based systems. One development that garnered particular

attention in the domain was the SHRDLU system (Winograd, 1972) which emphasized

procedural knowledge over logical representation and restricted the domain to a micro-

world, which offered a simplified environment with a limited set of objects, properties,

and transformations. By enforcing these limitations, the SHRDLU system was able to

complete a broad and versatile set of tasks in a block world environment while sidestep-

ping the combinatorial explosion by restricting the size of the problem space.

SHRDLU and similar projects ushered in an era of knowledge-based approaches

that took the form of expert systems (Buchanan and Shortliffe, 1984). Expert systems

9

focused on narrow domains and used knowledge bases and rules that were hand-crafted

by experts (Russell and Norvig, 1995). Early successes such as DENDRAL (Buchanan

and Sutherland, 1968; Feigenbaum et al., 1970; Buchanan and Feigenbaum, 1978), an

expert system on for chemistry, and MYCIN (Shortliffe, 1974, 1976), an expert system

in the medical domain, channeled the efforts of AI researchers towards expert systems

for decades. While expert systems were often applied to limited domains, the approach

also emboldened new work into commonsense reasoning and general-purpose knowledge

bases, most vividly in the Cyc project.

The Cyc project (Lenat et al., 1985; Lenat and Guha, 1990; Lenat, 1995) took

an expert-system approach by meticulously curating knowledge and crafting a deep and

complex ontology for all knowledge. Operating over two decades, the project has amassed

millions of assertions for hundreds of thousands of entities. One drawback and frequent

criticism of this approach, and expert systems in general, is the knowledge acquisition

bottleneck, describing the limitations of any computational approach that requires human

intervention to operate (Lenat et al., 1985; Wagner, 2006).

2.2 Knowledge Representation and Reasoning

The diversity of approaches toward knowledge and reasoning in the AI community was

accompanied by a diversity in the choices of knowledge representation (Barr and David-

son, 1981). The characteristics of these differing approaches to knowledge representation

are shaped by a number of central choices. A principal question is whether knowledge

should be represented explicitly, as semantically meaningful sentences, or implicitly, as

10

part of the reasoning procedure or predictive mechanism. A second concern is the scope

of the representation: should the representation of knowledge be universal or framed by

the context. A third essential question is how a representation can handle uncertainty in

cases where background knowledge or predicted outcomes cannot be clearly judged to be

true or false. A full exploration of these choices is beyond the scope of this chapter, but I

present some of the major relevant arguments in this longstanding discussion.

A forceful set of arguments has supported the role of knowledge representations

based on declarative logical forms. (Hayes, 1977; Nilsson, 1982) emphasizes the rep-

resentational power of logic, argues that many other approaches (such as Semantic Net-

works and frame-based reasoning) are equivalent or inferior in their representation of

knowledge, and dispels confusions about logic-based approaches. (Nilsson, 1991) also

argues in support of logic-based artificial intelligence, with the proviso that intelligent

machines will represent knowledge declaratively, using first-order predicate calculus. A

key development which shaped logical approaches to defining and expanding knowledge

was the introduction and refinement of description logics.

Description logics (Krötzsch et al., 2014; Rudolph, 2011; van Harmelen et al., 2007)

incorporated first-order logical syntax with restrictions to ensure decidability and control

tractability. A key feature of description logics is the separation of assertions from onto-

logical knowledge. In description logics, the facts in a knowledge base, consisting of the

attributes of entities and the relationships between them, are captured in the assertional

box (ABox). Ontological knowledge about attributes and relationships are captured in the

terminological box (TBox) and role box (RBox), respectively. The formal specification of

valid ontological constraints in the TBox and RBox defined different classes of descrip-

11

tion logics. These specifications increased the clarity of the ramifications of supporting

different types of ontological knowledge and enabled the construction of reasoning sys-

tems that demonstrated tractable performance on practically useful problems (Horrocks

et al., 1999). Description logics also played a key role in the development of the Semantic

Web (Baader et al., 2005).

2.3 Semantic Web: Ontologies and Tools

The Semantic Web movement was motivated by the prospect of exploiting the vast

amount of information available on the Internet to build capable, knowledge-based sys-

tem. In order to address the knowledge acquisition bottleneck, the Semantic Web move-

ment proposed democratizing the task of specification and annotation (Berners-Lee et al.,

2001; Antoniou and Van Harmelen, 2004). The key to this democratization was a set

of standards for specifying knowledge using common representations and formats, and

a common set of ontological conventions and primitives that could be easily adapted to

many domains (Hitzler et al., 2009). The promise of these developments was a so-called

“Semantic Web” of unambiguous, machine-readable information alongside the human-

readable World Wide Web.

One of the key steps in realizing this promise was the definition of standard formats

to express semantic knowledge (Decker et al., 2000). These formats include general pur-

pose specifications, such as the Resource Description Format (RDF), RDF Schema, and

the Web Ontology Language (Horrocks et al., 2003). These languages built on simple

primitives such as subject-predicate-object triples. Many domain-specific specifications

12

have been built on top of these languages (Rector, 2003), such as the Friend-of-a-Friend

(FOAF) (Golbeck and Rothstein, 2008) schema for social networks, the Functional Re-

quirements of Bibliographic Records (FRBR) (Boeuf, 2001) for cataloging publications,

creators, and subjects, the Music Ontology (Raimond et al., 2007), for musical works,

and GALEN and SNOMED (Smith et al., 2005), for medical information.

The development of these standards seemed a precondition for addressing the prob-

lem of building systems to acquire knowledge. By allowing many different knowledge

creators to share the same approach to representation, many hoped that semantically-

annotated would become omnipresent among content on the World Wide Web. However,

as the rate of content creation on the World Wide Web continued to accelerate, Semantic

Web annotations of this data did not keep pace (Shadbolt et al., 2006).

2.4 Information and Knowledge Extraction

Concurrently with the development of tools and ontologies by the Semantic Web commu-

nity, a number of advances were made in information extraction (Sarawagi, 2008). One

of the keys to the rapid development in information extraction were improved techniques

for natural language processing. Improvements in parsing (Klein and Manning, 2003;

Collins and Koo, 2005; De Marneffe et al., 2006), part-of-speech tagging (Toutanova

et al., 2003), semantic role labeling (Màrquez et al., 2008), and named entity recogni-

tion (Nadeau and Sekine, 2007; Collins and Singer, 1999), were the raw ingredients that

enabled the information extraction advances of the last decade.

Building from these advances, many recent projects focus on extracting information

13

from text, including a number of efforts to extract structured knowledge. These projects

usually adopted one of three models: (1) extracting information from structured textual

inputs with a well-defined set of output targets; (2) extracting from unstructured text with

no fixed set of output targets; or (3) extracting information from unstructured text while

still maintaining a well-defined set of output targets. The first and third approaches are

generally referred to as ontology-based information extraction (OBIE) (Wimalasuriya and

Dou, 2010) while the second model is called open information extraction (OpenIE).

Projects that adopted the first model of information extraction often worked with

information sources with regular and well-defined structure that were highly curated

to maintain quality and minimize noise, with the online, user-constructed encyclopedia

Wikipedia as a favorite example. Intelligence in Wikipedia (Weld et al., 2008), the DB-

Pedia resource (Auer et al., 2007; Bizer et al., 2009) and YAGO (Suchanek et al., 2007,

2008; Kasneci et al., 2009) all use Wikipedia as input and produced knowledge bases

that relate Wikipedia entities using structured labels, such as those found in informational

tables on Wikipedia pages. These projects had a significant initial impact, since they

quickly created a high-quality source of structured knowledge. However, a key limitation

of these approaches was their need for high-quality, structured input, another instance of

the knowledge acquisition bottleneck.

The second model of information extraction, OpenIE, took a drastically different

approach to gathering knowledge (Etzioni et al., 2008; Christensen et al., 2011; Etzioni

et al., 2011; Fader et al., 2011; Gamallo et al., 2012; Mausam et al., 2012). These systems

relied heavily on natural language processing to analyze the structural features of natu-

rally occurring text. Based on these features, OpenIE systems attempt to extract subjects,

14

objects, and determine the relationships between them in text. A key strength of this ap-

proach is generality: OpenIE can be applied to any text without defining target attributes

or relationships in advance. However a major challenge for OpenIE is the quality and

interpretability of the results. Errors in the underlying NLP systems can compromise the

output of the information extraction. More problematically, the systems extract attributes

and relationships, but determining whether these extractions have any semantically useful

content is still an open challenge (Wang et al., 2011).

The third model of information extraction attempts to find a middle ground be-

tween these approaches by extracting knowledge that fits a known schema using naturally

occurring text (as well as structured information, when available). Projects such as Ele-

mentary (Niu et al., 2012a), the Knowledge Vault (Dong et al., 2014a), NELL (Carlson

et al., 2010a), PROSPERA (Nakashole et al., 2011), and StatSnowball (Zhu et al., 2009)

all use, to varying extents, a well-defined set of entity attributes and relationships to ex-

tract. An attractive characteristic of these systems is that they are adaptable to a variety

of textual corpora, but still produce readily interpretable results. One challenge facing

these approaches is the curse of dimensionality: the textual input has a vast number of

features, and in supervised settings training data is required to determine which features

are reliable for extracting a given attribute or relationship.

One strategy for addressing this difficulty widely adopted by the information ex-

traction community is the use of semi-supervised learning to apply a modest amount of

training data to expand the scope of extractions. In particular, distant or weak supervi-

sion, where instead of training instances, training data takes the form of a high-precision

rule or a pattern that can be applied to instances (Surdeanu et al., 2010; Nguyen and Mos-

15

chitti, 2011; Thomas et al., 2011; Krause et al., 2012; Takamatsu et al., 2012; Roth et al.,

2013; Angeli et al., 2014; Fan et al., 2014). Usually a bootstrapping procedure is used

to iteratively improve the model in these scenarios. While these techniques have fueled

many different knowledge extraction efforts, many researchers have begun to use the out-

puts of these systems as the first stage in more sophisticated knowledge base construction

systems using probabilistic modeling techniques.

2.5 Probabilistic Graphical Models and Structured Prediction

One of the key limitations of early approaches to reasoning in knowledge bases is the

difficulty of capturing uncertainty, such as the uncertainty that arises from myriad extrac-

tions from text. Probabilistic models (Pearl, 1988) provide the mechanisms to capture

both the uncertainty of the data. The advent of probabilistic graphical models (PGMs)

has provided the machine learning community with a powerful way of expressing de-

pendencies between random variables and building models to make predictions or infer

missing information (Koller and Friedman, 2009). PGMs have proved particularly useful

in cases when output is structured and a number of related judgments must be made, such

as modeling entities, labels, and links in a network (Namata et al., 2011) or learning a

mixture of sparse distributions describing discrete data (Blei et al., 2003).

A number of approaches have extended PGMs to allow models to be specified easily

and include a richer set of features. Markov logical networks (Richardson and Domin-

gos, 2006) and probabilistic soft logic (Broecheler et al., 2010) provide a first-order logic

syntax that allows discrete and continuous Markov random fields, respectively, to be eas-

16

ily specified and lifted-inference (Braz et al., 2005) takes advantage of templated models

during inference. Approaches such as conditional random fields (Lafferty et al., 2001),

max-margin Markov networks (Taskar et al., 2003), SEARN (Daumé III et al., 2009) and

SVMstruct (Tsochantaridis et al., 2004) combine the advantages of feature-rich classifica-

tion approaches and the structural dependencies between outputs captured by PGMs.

2.6 Contemporary Approaches to Knowledge Base Construction

Many recent research projects seek to build knowledge bases from the noisy outputs of

knowledge extraction systems (Nickel et al., 2015). These projects adopt diverse ap-

proaches to this task: some focus on fusing knowledge from different techniques to obtain

a more robust knowledge base, others try to map the extractions into lower dimensional

space to remove variability, and a third set of approaches uses the ontological constraints

between extractions to develop measures of coherency.

Information extraction systems generate many extractions using differing tech-

niques from diverse inputs. A number of approaches seek to exploit the agreements

and disagreements in extractions to improve knowledge base construction. Dong et al.

(2014b) describes knowledge fusion, a method for combining the outputs of multiple ex-

traction techniques. Other approaches (Platanios et al., 2014; Balcan et al., 2013; Carlson

et al., 2010b) use these patterns to estimate the error rate of extraction techniques, and, by

extension, better understand the errors in the knowledge base.

A second set of techniques seeks to improve knowledge base construction by map-

ping the noisy knowledge in extractions to a lower dimensional space to reduce variability

17

and capture the essential statistical correlations between relationships and attributes in the

knowledge base (Nickel et al., 2011, 2014; Yao et al., 2012, 2013; Socher et al., 2013).

These approaches can often exploit popular models for dimensionality reduction through

matrix factorization or representation learning with neural networks. This strength comes

at a cost: the generality of these approaches makes incorporating the semantic relation-

ships in knowledge bases difficult.

A key differentiator between “knowledge” and arbitrary data is the semantically

meaningful relationships that exist between the extractions. A number of approaches at-

tempt to capture these relationships by introducing constraints into the knowledge base

construction process. PROSPERA (Nakashole et al., 2011) uses hard constraints derived

from the YAGO ontology with a weighted MaxSAT reasoner. WebChild (Tandon et al.,

2014b,a) encodes measures of coherency using an integer-linear program. Elementary

(Niu et al., 2012b) and StatSnowball (Zhu et al., 2009) both include a collection of statis-

tical models, including constraints specified with Markov logic to improve the consistency

of the extracted knowledge base. Jiang et al. (2012) introduce a method based on Markov

logic networks for all extractions to enforce ontological constraints on the extractions,

discussed in more detail in subsequent chapters. ProPPR takes a different approach, by

using random walks in a knowledge graph to determine the probability of extractions

(Wang et al., 2014, 2015).

My work presents an alternate model for knowledge base construction that differs

from the previous and contemporary work in a number of important ways. Systems such

as PROSPERA and WebChild use specific, hand-coded constraints for their associated

tasks and are difficult to optimize, whereas my work specifies a general model for the

18

common failure cases in knowledge graphs, allows a straightforward specification of the

associated constraints, and implements scalable optimization for these constraints. Stat-

Snowball and Elementary rely on simpler models such as logistic regression and con-

ditional random fields, but these models do not incorporate the rich ontological domain

knowledge and their results must be heuristically reconciled with the output of a Markov

logic network. The work of Jiang et al. uses a Markov logic network and jointly opti-

mizes over all extractions, but the choice of Markov logic severely limits the scalability of

the approach. Finally, the idea of locally grounded models using random walks, such as

ProPPR, can be seen as complementary to my work, as I use a partially grounded model

for streaming inference. However, the model of knowledge graphs I propose captures

the general ontological relationships in knowledge graphs and provides a cleaner way of

integrating ontological information.

2.7 Streaming and Online Inference

Updating inference is a longstanding problem in artificial intelligence. The classic prob-

lem of belief revision (Gardenfors, 1992) considers revising and updating a set of proposi-

tional beliefs using a set of axiomatic guarantees to consistency. Diverse research has con-

sidered updating the parameters or structure of Bayesian networks in response to evolving

evidence (e.g. Buntine, 1991; Friedman and Goldszmidt, 1997; Li et al., 2006). Finally,

many models address dynamic or sequential data, such as Dynamic Bayesian Networks

(Murphy, 2002) and hierarchical hidden Markov models (Fine et al., 1998). Our work

addresses the specific problem of approximating full MAP inference in the online setting

19

when a model is given and provides formal guarantees for the approximation quality.

Making efficient updates to the full inference result is the goal of a related area of

research, adaptive inference. Adaptive marginal inference (Acar et al., 2008; Sümer et al.,

2011) can update the marginal probability of a query in O
(
2tw(G) log n

)
-time, where

tw(G) is the tree-width of the graph and n is the number of variables. Adaptive MAP

inference (Acar et al., 2009) can update the MAP state in O (m+m log(n/m))-time,

where m is the number of variables that change their state. Though the algorithm does

not need to knowm beforehand, a model change could result in changes to all n variables’

states, with cost equivalent to exact inference. These adaptive inference techniques do not

currently support partial updates to the MAP state or accommodate budgeted updates.

Approximate adaptive inference was considered by Nath and Domingos (2010),

who proposed expanding frontier belief propagation (EFBP), a belief propagation algo-

rithm that only updates messages in the vicinity of the updated potentials. They showed

that the beliefs generated by EFBP lower- and upper-bound the beliefs of full BP, thereby

providing guarantees on the quality of the approximation. This analysis differs from mine

in that it bounds the individual marginal probabilities, whereas I bound the L1 distance

between MAP states. Unlike my approximation algorithm, EFBP does not explicitly limit

computation and, in the worst case, may need to update all variables to achieve conver-

gence conditions.

Another related line of work focuses on anytime inference. These methods perform

belief propagation, either directly as in (Chechetka and Guestrin, 2010) or on using lifted

inference as in (de Salvo Braz et al., 2009), with the goal of providing a bounded inference

of query set given a time budget. This contrasts with my approach which is focused on

20

improving the overall MAP estimate in bounded time, rather than the estimate of a specific

query set.

The quantity I call inference regret is conceptually similar to collective stability

(London et al., 2013). Collective stability measures the amount of change in the output

of a structured predictor induced by local perturbations of the evidence. London et al.

(2013, 2014) analyzed the collective stability of marginal inference in discrete graphical

models, concluding that (approximate) inference with a strongly convex entropy function

enhances stability. Our technical approach is similar, in that it also leverages strong con-

vexity. However, the types of perturbations I consider—fixing target variables—are not

covered by their analysis. Stability analysis is closely related to sensitivity analysis. Since

the terms are used interchangeably in the literature, I distinguish them as follows: sen-

sitivity analysis examines if and when the solution changes; stability analysis examines

how much it changes by. Laskey analyzed the sensitivity of queries (which can be used

for marginal inference) in Bayesian networks. Chan and Darwiche studied the sensitivity

of queries (2005) and MAP inference (2006) in Markov networks. Their 2005 paper also

analyzes the stability of queries.

21

Chapter 3: Problem Formulation for Knowledge Graph Identification

Given the many different approaches and projects focused on knowledge base construc-

tion, choosing the appropriate problem setting and attendant formalisms is important. To

provide a clearer perspective on the obstacles for large-scale knowledge base construction,

we inventory common errors produced by information extraction systems, illustrated with

anecdotes from a real-world system. By representing a knowledge base as a graph, we

demonstrate how the prominent errors in knowledge graphs correspond to the fundamen-

tal tasks in an approach known as graph identification. One important ingredient for graph

identification for knowledge graphs is ontological information. We devise a formal def-

inition of knowledge graph identification, which combines candidates from information

extraction and ontological information and show how this problem formulation addresses

errors in knowledge graphs.

3.1 Knowledge Graphs

A knowledge graph is a structured knowledge base consisting of nodes and labeled, di-

rected edges, K = (Vk, Ek). Nodes in the knowledge graph correspond to entities. Each

22

node is associated with one or more of s indicator variables representing labels:

v ∈ Vk , (l1, l2, · · · ls);∀i∈(1···s)li ∈ {0, 1}

These labels capture categorical class or type information and attributes of the entity. The

edges of the knowledge graph are relationships between two nodes. Since there are many

possible relationships in a knowledge graph, each edge is defined by the source and target

nodes and a set of indicator variables representing possible relationships:

e ∈ Ek , (vsrc, vtgt, r1, r2, · · · rt), ri ∈ {0, 1}

The possible labels (l1, l2, · · · ls) and relationships (r1, r2, · · · rt) in the knowl-

edge graph are defined by an ontology, also known as a concept graph. The di-

chotomy between the knowledge graph and the concept graph can be likened to the

ABox and TBox in description logics (van Harmelen et al., 2007) or the data ta-

bles and schema in databases or RDF (Hitzler et al., 2009). However, the con-

cept graph has a more structured form as a graph, where nodes are the possible la-

bels and relationships in the knowledge graph, and edges between labels and rela-

tionships express ontological constraints. The many ontological relationships found

in Semantic Web formats such as RDF and OWL are captured in the concept

graph. Constraints such as domain (rdf:domain), range (rdf:range), label

subsumption (rdf:subClassOf), relation subsumption (rdf:subPropertyOf),

mutual exclusion of labels (owl:disjointWith), mutual exclusion of relations

23

Figure 3.1: A simple example showing a knowledge graph, which captures entity labels
and relationships between entities, and a concept graph, which captures ontological rela-
tionships between labels and relationships

(owl:propertyDisjointWith), inverse labels (owl:complementOf), and in-

verse relations (owl:inverseOf) can all be expressed as edges in the concept graph.

For example, in a concept graph, mutually exclusive (disjointWith) labels are con-

nected by an edge expressing the mutual exclusion relationship, while the label (class)

that comprises the domain of a relation (property) can be specified by a domain edge

between the class and the relation. Other ontological properties such as symmetry

(owl:SymmetricProperty), functionality (owl:FunctionalProperty), tran-

sitivity (owl:TransitiveProperty), cardinality (owl:cardinality) can be

specified as attributes of nodes in the concept graph. Ontological relationships with higher

arities, e.g. intersection (owl:intersectionOf), and union (owl:unionOf), can

be more difficult to express, requiring the inclusion of hyperedges in the graph. Figure

3.1 shows an example of a knowledge graph and its accompanying concept graph.

24

3.2 Common Errors in Information Extraction

Information extraction systems operate over many diverse datatypes, such as web pages,

images and videos, and use a collection of strategies to generate candidate facts this data.

Many of the popular and practically successful information extraction systems have fo-

cused on extracting knowledge from text. These systems use a host of techniques, span-

ning syntactic, lexical and structural features of text. Ultimately, these extraction systems

produce candidate facts that include a set of entities, attributes of these entities, and the

relations between these entities which can be viewed as a structure We call the extraction

graph. However errors in the source data and the extraction process introduce inconsis-

tencies in the extraction graph. Such noise obscures the true knowledge graph, which

captures a consistent set of entities, attributes and relations. In this section, We inventory

the differing errors made by information extraction systems and discuss their impact on

the knowledge graph. We illustrate these errors and the accompanying challenges with

examples taken from a real-world information extraction system, the Never-Ending Lan-

guage Learner (NELL).

3.2.1 Entity Ambiguity

Entity recognition and mapping is one of the fundamental problems in information extrac-

tion. The task of recognizing entities in text is challenging for a number of reasons. Many

textual analysis systems rely on parsing or part-of-speech tagging to identify entities, and

both of these tasks suffer from errors. Often such systems fail to extract an entity, extract a

spurious entity, or misidentify the boundary of the entity, producing an entity that includes

25

extraneous content or is not specific enough (Nadeau and Sekine, 2007). For example,

NELL includes entities for “Obama” and “Barack Obama Obama”; the former entity is

not specific enough to disambiguate from other members of the Obama family, while the

latter may be the result of mistakenly concatenating an entity spanning two sentences.

Even when entity recognition systems operate correctly, the diversity of text on the

WWW can introduce noise. Many textual references that initially look different may refer

to the same real-world entity. For example, NELL’s knowledge base contains candidate

facts involving the entities “kyrghyzstan”, “kyrgzstan”, “kyrgystan”, “kyrgyz republic”,

“kyrgyzstan”, and “kyrgistan” which are all variants or misspellings of the country Kyr-

gyzstan found on the World Wide Web.

In the extraction graph, each of these incorrectly identified entities correspond to

different nodes. In the correct knowledge graph, spurious nodes are removed and co-

referent entities are collapsed into a single node. The task of entity resolution is used to

determine co-referent entities in and produce a consistent set of labels and relations for

each resolved node.

3.2.2 Attribute Errors

Another challenge in knowledge graph construction is inferring labels consistently. In-

formation extraction systems use a variety of signals to predict labels, which range from

extracting information using tables and links, to learning textual patterns indicative of a

particular label. Since training data is scarce, the features associated with a particular

label can be unreliable.

26

For example, NELL’s extractions assign Kyrgyzstan the labels “country” as well

as “bird.” This error results from the interaction between an inconsistency in the source

data and an inadequately robust feature in the extraction system. NELL extracted features

from webpages on a birdwatching club website. These webpages would present catalogs

of birds seen on birdwatching trips by the members of a birdwatching club. The vast

majority of these webpages would contain hyperlinks where the displayed link text was

the name of the bird, leading to a webpage with pictures of the named bird. However, in

one instance a member posted a link to all birds sighted in a trip to the country Kyrgyzstan,

and specified the link text as Kyrgyzstan, leading to an erroneous extraction.

Such errors are commonplace due to a mismatch between the numerous features

available in large text corpora and the tiny amount of training data available to assess

the relevancy of these features. While the extraction graph may contain many incorrect

and inconsistent labels, the correct knowledge graph maintains a consistent set of labels.

Ontological information suggests that an entity is very unlikely to be both a country and a

bird at the same time, since these classes are mutually exclusive. Furthermore, Kyrgyzstan

has a number of relationships with other entities, such as a hasCapital relationship

with the entity Bishkek, which are inconsistent with the assertion that Kyrgyzstan is a

bird. By using information from other labels and related facts, such inconsistencies can

be removed from the knowledge graph. The task of determining the labels of a node by

using features from neighboring nodes is called collective classification.

27

3.2.3 Relation Extraction Errors

A third problem commonly encountered in knowledge graphs is determining the relation-

ships between entities. Similar to attribute prediction, information extraction systems use

a host of features to determine whether a relationship exists between two extracted en-

tities. Again, the staggering number of potential features is mismatched with the small

amount of training data available for these applications, and errors are common.

For example, NELL also has many facts relating the location of Kyrgyzstan to other

entities. These candidate relations include statements that Kyrgyzstan is located in Kaza-

khstan, Kyrgyzstan is located in Russia, Kyrgyzstan is located in the former Soviet Union,

Kyrgyzstan is located in Asia, and that Kyrgyzstan is located in the US. Some of these

possible relations are true, while others are clearly false and contradictory.

While the extraction graph may contain many spurious relationships, the correct

knowledge graph includes a consistent set of links. Using the labels and other relation-

ships of the nodes can aid the process of removing inconsistent links. The process of

predicting edges between nodes is known as link prediction.

3.3 Graph Identification

In the previous section, we identified three core problems, entity ambiguity, attribute er-

rors, and relation extraction errors, that appear in the extraction graph produced by an

information extraction system. These three problems can be addressed by the tasks of en-

tity resolution, collective classification, and link prediction, respectively. (Namata et al.,

2011) refer to the process of inferring the structure of a graph through the combination of

28

entity resolution, collective classification, and link prediction as graph identification.

Graph identification relies on relational features, such as the labels and relations of

neighboring nodes. One key observation about the graph identification problem settings

is that the component tasks are intradependent as well as interdependent. For example,

link prediction may be a function of the labels of neighboring nodes, but these labels

are inferred by collective classification, which, in turn, depends on the correct resolution

of entities and the links between them. As a result, graph identification benefits from a

joint optimization, where entity resolution, collective classification, and link prediction

are performed concurrently.

Graph identification can pose two substantial challenges: scalability and modeling.

Jointly performing entity resolution, collective classification and link prediction is far

more complex than completing each task separately. In particular, graph identification

models produce output in a state space that is the product of the state space of each

task – the results include all possible labels, all possible entity co-references, and all

possible relationships between entities. Namata et al. sidesteps these problems with C3,

or coupled collective classifiers, where each of the three tasks is performed separately,

using the outputs of the other two tasks as features in the prediction, with the process

repeated until a convergence criterion is met. The second challenge in graph identification

is model specification. While the tasks of entity resolution, collective classification, and

link prediction are interrelated, determining the features that appropriately capture these

interactions can be difficult.

29

country

Kyrgyzstan Kyrgyz Republic

bird Bishkek

SameEnt

Mut

Figure 3.2: An illustration of the example showing how knowledge graph identification
can resolve conflicting information in an extraction graph. Entities are shown in rectan-
gles, dotted lines represent uncertain information, solid lines show ontological constraints
and double lines represent co-referent entities found with entity resolution.

3.4 Adapting Graph Identification to Knowledge Graphs

Refining an extraction graph to produce a knowledge graph is an instance of graph iden-

tification. Features from an information extraction system, such as confidence scores

assigned to candidate extractions, can provide the basic features for graph identifica-

tion. However knowledge graphs have a key ingredient that differentiates them from

the general graph identification setting: the ontological knowledge found in the concept

graph. The concept graph provides a rich source of relational information that mediates

dependencies between the facts in the knowledge graph. These dependencies allow a so-

phisticated approach to resolving the knowledge graph, while providing a well-founded

specification for modeling interdependencies between the tasks in graph identification.

Figure 3.2 illustrates a complex example of how ontological information can be

used to resolve a knowledge graph. As mentioned earlier, NELL’s ontology includes

the constraint that the labels “bird” and “country” are mutually exclusive. Reasoning

collectively allows us to resolve which of these two labels is more likely to apply to Kry-

gyzstan. For example, NELL is highly confident that the Kyrgyz Republic has a capital

30

city, Bishkek. The NELL ontology specifies that the domain of the relation “hasCapital”

has label “country.” Entity resolution allows us to infer that “Kyrgyz Republic” refers

to the same entity as “Kyrgyzstan.” Deciding whether Kyrgyzstan is a bird or a coun-

try now involves a prediction which includes the confidence values of the corresponding

“bird” and “country” facts from co-referent entities, as well as collective features from

ontological relationships of these co-referent entities, such as the confidence values of the

“hasCapital” relations.

We refer to the process of inferring a knowledge graph from a noisy extraction

graph using statistical features and ontological constraints as knowledge graph identifica-

tion. The central hypothesis on this dissertation is that the collective dependencies found

in a knowledge graph are paramount to the goal of knowledge graph construction. The

problem definition of knowledge graph identification admits many possible models capa-

ble of meeting the requirements of the problem definition. In the next chapter, we define

a probabilistic graphical model for knowledge graph identification that meets these re-

quirements and tests the hypothesis that knowledge graph identification will improve the

quality of the knowledge graph.

31

Chapter 4: Modeling Knowledge Graph Identification

The probabilistic model we define for knowledge graph identification uses a modeling

framework called probabilistic soft logic (PSL). We provide background on PSL in the

next section, and then use PSL to define a model for knowledge graph identification. This

model captures both the uncertainty from information extraction systems and the key con-

straints between facts found in the ontology. Next, we convert this model of knowledge

graph identification into a probability distribution over the space of possible knowledge

graphs, and use this distribution to determine the most probable knowledge graph. Finally,

we show the efficacy of this approach in a number of empirical experiments.

4.1 Background: PSL for Knowledge Graphs

Probabilistic soft logic (PSL) (Bach et al., 2015; Broecheler et al., 2010; Kimmig et al.,

2012) is a recently-introduced framework which allows users to specify rich probabilistic

models over continuous-valued random variables. Like other statistical relational learning

languages such as Markov Logic Networks (MLNs), it uses first-order logic to describe

features that define a Markov network. In contrast to other approaches, PSL employs

continuous-valued random variables rather than binary variables and casts most probable

explanation (MPE) inference as a convex optimization problem that is significantly more

32

efficient to solve than its combinatorial counterpoint (polynomial vs. exponential).

A PSL model is composed of a set of weighted, disjunctive first-order logic rules,

where each rule defines a set of features of a Markov network sharing the same weight.

Consider the formula

P(A,B) ∧ Q(B,C)
w⇒ R(A,B,C)

which is an example of a PSL rule. Here w is the weight of the rule, A, B, and C are

universally-quantified variables, and P, Q and R are predicates. A grounding of a rule

comes from substituting constants for universally-quantified variables in the rule’s atoms.

In this example, assigning constant values A = a, B = b, and C = c to the variables in

the rule above would produce the ground atoms P(a, b), Q(b, c), R(a, b, c). Each ground

atom takes a soft-truth value in the range [0, 1].

PSL associates a numeric distance to satisfaction with each ground rule that de-

termines the value of the corresponding feature in the Markov network. The distance to

satisfaction is defined by treating the ground rule as a formula over the ground atoms

in the rule. In particular, PSL uses the Lukasiewicz t-norm and co-norm to provide a

relaxation of the logical connectives, AND (∧), OR(∨), and NOT(¬), as follows:

p ∧ q = max(0, p+ q − 1) (4.1)

p ∨ q = min(1, p+ q) (4.2)

¬p = 1− p (4.3)

33

This relaxation coincides with Boolean logic when p and q are in {0, 1}, and provides a

consistent interpretation of soft-truth values when p and q are in the numeric range [0, 1].

A PSL program, Π, consisting of a model as defined above, along with a knowl-

edge base of atoms, F , produces a set of ground rules, R by substituting the universally

quantified atoms in a rule with ground atoms from F . If I is an interpretation (an assign-

ment of soft-truth values to ground atoms) and r is a ground instance of a rule, then the

distance to satisfaction φr(I) of r is 1 − Tr(I), where Tr(I) is the soft-truth value from

the Lukasiewicz t-norm. This distance to satisfaction takes the form of a hinge-function,

a commonly-used, convex relaxation of 0-1 loss that has many tractability benefits. For

this reason the class of probabilistic models implemented by PSL are known as hinge-loss

Markov random fields (HL-MRFs).

We can define a probability distribution over interpretations by combining the

weighted degree of satisfaction over all ground rules, R, and normalizing, as follows:

f(I) =
1

Z
exp

[
−
∑
r∈R

wrφr(I)p

]
(4.4)

Here Z is a normalization constant, wr is the weight of rule r, and p in {1, 2} allows

a linear or quadratic combination of rules. Thus, a PSL program (set of weighted rules

and facts) defines a probability distribution from a logical formulation that expresses the

relationships between random variables.

MPE inference in PSL determines the most likely soft-truth values of unknown

ground atoms using the values of known ground atoms and the dependencies between

atoms encoded by the rules, corresponding to inference of random variables in the under-

34

lying Markov network. PSL atoms take soft-truth values in the interval [0, 1], in contrast

to MLNs, where atoms take Boolean values. MPE inference in MLNs requires optimiz-

ing over combinatorial assignments of Boolean truth values. In contrast, the relaxation to

the continuous domain greatly changes the tractability of computations in PSL: finding

the most probable interpretation given a set of weighted rules is equivalent to solving a

convex optimization problem. Recent work from Bach et al. (2012) introduces a con-

sensus optimization method applicable to PSL models; their results suggest consensus

optimization scales linearly with the number of ground rules in the model.

4.2 Model for Knowledge Graph Identification

Knowledge graphs contain three types of facts: facts about entities, facts about entity

labels and facts about relations. We represent entities with the logical predicate ENT(E)

and labels with the logical predicate LBL(E,L) where entity E has label L. Relations are

represented with the logical predicate REL(E1,E2,R) where the relation R holds between

the entities E1 and E2, eg. R(E1,E2).

In knowledge graph identification, our goal is to identify a true set of atoms from

a set of noisy extractions. Our method for knowledge graph identification incorporates

three components: capturing uncertain extractions, performing entity resolution, and en-

forcing ontological constraints. We show how to create a PSL program that encompasses

these three components, and then relate this PSL program to a distribution over possible

knowledge graphs.

35

4.2.1 Representing Uncertain Extractions

We relate the noisy extractions from an information extraction system to the above log-

ical predicates by introducing candidate predicates, using a formulation similar to Jiang

et al. (2012). For each candidate entity, we introduce a corresponding predicate, CAN-

DENT(E). Labels or relations generated by the information extraction system correspond

to predicates CANDLBL(E,L) or CANDREL(E1,E2,R) in the system. Uncertainty in these

extractions is captured by assigning these predicates a soft-truth value equal to the con-

fidence value from the extractor. For example, the extraction system might generate a

relation, hasCapital(kyrgyzstan, Bishkek) with a confidence of .9, which we

would represent as CANDREL(kyrgyzstan,Bishkek, hasCapital) and assign it a

truth value of .9.

Information extraction systems commonly use many different extraction techniques

to generate candidates. For example, NELL produces separate extractions from lexical,

structural, and morphological patterns, among others. We represent metadata about the

technique used to extract a candidate by using separate predicates for each technique T,

of the form CANDRELT and CANDLBLT . These predicates are related to the true values

of attributes and relations we seek to infer using weighted rules.

CANDRELT (E1, E2, R) ⇒ REL(E1, E2, R) (4.5)

CANDLBLT (E,L) ⇒ LBL(E,L) (4.6)

Together, we denote the set of candidates, generated from grounding the rules above using

36

the output from the extraction system, as the set C.

4.2.2 Entity Resolution

While the previous PSL rules provide the building blocks of predicting links and labels

using uncertain information, knowledge graph identification employs entity resolution to

pool information across co-referent entities. A key component of this process is identify-

ing possibly co-referent entities and determining the similarity of these entities, which we

discuss in detail in Section 4.4. We use the SAMEAS predicate to capture the similarity

of two entities, for example SAMEAS(kyrgyzstan, kyrgz republic).

To perform entity resolution using the SAMEAS predicate we introduce three rules,

whose groundings we refer to as S, to our PSL program:

SAMEAS(E1, E2) ∧ LBL(E1, L)⇒ LBL(E2, L) (4.7)

SAMEAS(E1, E2) ∧ REL(E1, E,R)⇒ REL(E2, E,R) (4.8)

SAMEAS(E1, E2) ∧ REL(E,E1, R)⇒ REL(E,E2, R) (4.9)

These rules define an equivalence class of entities, such that all entities related by

the SAMEAS predicate must have the same labels and relations. The soft-truth value of

the SAMEAS, derived from our similarity function, mediates the strength of these rules.

When two entities are very similar, they will have a high truth value for SAMEAS, so any

label assigned to the first entity will also be assigned to the second entity. On the other

hand, if the similarity score for two entities is low, the truth values of their respective

37

labels and relations will not be strongly constrained. We introduce these rules as weighted

rules in the PSL model, where the weights can capture the reliability of the similarity

function.

4.2.3 Enforcing Ontological Constraints

In our PSL program we also leverage rules corresponding to an ontology, the groundings

of which are denoted as O. These ontological rules are based on the logical formula-

tion proposed in Jiang et al. (2012). Each type of ontological relation is represented as a

predicate, and these predicates represent ontological knowledge of the relationships be-

tween labels and relations. For example, the ontological predicates DOM(hasCapital,

country) and RNG(hasCapital, city) specify that the relation hasCapital is

a mapping from entities with label country to entities with label city. The predicate

MUT(country, city) specifies that the labels country and city are mutually exclu-

sive, so that an entity cannot have both the labels country and city. We similarly use

predicates for subsumption of labels (SUB) and relations(RSUB), and inversely-related

functions (INV). To use this ontological knowledge, we introduce rules relating each on-

tological predicate to the predicates representing our knowledge graph. We specify seven

types of ontological constraints in our experiments using weighted rules:

38

DOM(R,L) ∧ REL(E1, E2, R) ⇒ LBL(E1, L) (4.10)

RNG(R,L) ∧ REL(E1, E2, R) ⇒ LBL(E2, L) (4.11)

INV(R, S) ∧ REL(E1, E2, R) ⇒ REL(E2, E1, S) (4.12)

SUB(L, P) ∧ LBL(E,L) ⇒ LBL(E,P) (4.13)

RSUB(R, S) ∧ REL(E1, E2, R) ⇒ REL(E1, E2, S) (4.14)

MUT(L1, L2) ∧ LBL(E,L1) ⇒ ¬LBL(E,L2) (4.15)

RMUT(R, S) ∧ REL(E1, E2, R) ⇒ ¬REL(E1, E2, S) (4.16)

4.3 Implementing Knowledge Graph Identification with PSL

Combining the logical rules introduced in this chapter with atoms, such as can-

didates from the information extraction system (e.g. CANDREL(kyrgyzstan,

Bishkek, hasCapital)), co-reference information from an entity resolution system

(e.g. SAMEAS(kyrgyzstan, kyrgz republic)) and ontological information (e.g.

DOM(hasCapital, country)) we can define a PSL program, Π. The inputs to this

program instantiate a set of ground rules, R, that consists of the union of groundings

from uncertain candidates, C, co-referent entities, S, and ontological relationships, O.

The distribution over interpretations, I , generated by PSL corresponds to a probability

39

mo:MusicalArtist

mo:SoloMusicArtist mo:MusicGroup

subClassOfsubClassOf

mo:Labelmo:Release

mo:Record

mo:Track

mo:Signal

mo:published_as

mo:track

mo:record

mo:label

foaf:maker

foaf:made

inverseOf

Figure 4.1: Subset of Music Ontology mapped using LinkedBrainz for MusicBrainz data
in our synthetic dataset

distribution over knowledge graphs, G:

PΠ(G) = f(I) =
1

Z
exp

[∑
r∈R

wrφr(I)p

]
(4.17)

The results of inference provide us with the most likely interpretation, or soft-truth assign-

ments to entities, labels and relations that comprise the knowledge graph. By choosing

a threshold on the soft-truth values in the interpretation, we can select a high-precision

set of facts to construct a knowledge graph. Appendix A provides a sample PSL program

that demonstrates how all of these components are implemented in code.

4.4 Experimental Evaluation

4.4.1 Datasets and Experimental Setup

We evaluate our method on two different datasets: a synthetic knowledge base derived

from the LinkedBrainz project (Dixon and Jacobson), which maps data from the Mu-

40

sicBrainz community using ontological information from the MusicOntology (Raimond

et al., 2007) as well as web-extraction data from the Never-Ending Language Learning

(NELL) project (Carlson et al., 2010a). Our goal is to assess the utility of knowledge

graph identification, formulated as a PSL model, at inferring a knowledge graph from

noisy data. Additionally, we contrast two very different evaluation settings. In the first, as

used in previous work Jiang et al. (2012) inference is limited to a subset of the knowledge

graph generated from the test or query set. In the second evaluation setting, inference

produces a complete knowledge graph, which is not restricted by the test set but employs

a soft-truth threshold for atoms. We provide documentation, code and datasets to replicate

our results on GitHub.1

MusicBrainz

MusicBrainz is a community-driven, open-source, structured database for music meta-

data, including information about artists, albums, and tracks, The Music Ontology is

built on top of many well known ontologies, such as FRBR (Davis et al., 2005) and

FOAF (Brickley and Miller, 2010), and has been used widely, for instance in BBC Mu-

sic Linked Data sites (Kobilarov et al., 2009). However, the relational data available from

MusicBrainz are expressed in a proprietary schema that does not map directly to the Music

Ontology. To bridge this gap, the LinkedBrainz project publishes an RDF mapping be-

tween the freely available MusicBrainz data and the Music Ontology using D2RQ (Bizer

and Seaborne, 2004). A summary of the labels and relations we use in our data is shown

in Figure 4.1. We use an intuitive mapping of ontological relationships to the PSL pred-

1https://github.com/linqs/KnowledgeGraphIdentification

41

https://github.com/linqs/KnowledgeGraphIdentification

icates, using ontological information from FRBR and FOAF classes used by the Music

Ontology. Specifically we convert rdfs:domain to DOM, rdfs:range to RNG,

rdfs:subClassOf to SUB, rdfs:subPropertyOf to RSUB, owl:inverseOf

to INV, and owl:disjointWith to MUT.

Our synthetic knowledge graph uses a sample of data from the LinkedBrainz map-

ping of the MusicBrainz project2 and adds noise to generate a realistic data set. To gen-

erate a subset of the LinkedBrainz data, we use snowball sampling from a set of tracks

in the MusicBrainz dataset to produce a set of recordings, releases, artists and labels.

Next, we introduce noise into this graph by randomly removing known facts and adding

inconsistent facts as well as generating random confidence values for these facts. This

noise can be interpreted as errors introduced by a MusicBrainz user misspelling artist

names, accidentally switching input fields, or omitting information when contributing to

the knowledge base.

We model these errors by distorting a percentage of the true input data. For labels,

we omit known labels and introduce spurious labels for 25% of the facts in the input

data. When dealing with relations, We focus on the foaf:maker and foaf:made

relations between artists and creative works. We randomly remove one of these pair of

relations 25% of the time. Finally, 25% of the time we remove the relationship between a

work and its artist, and insert a new relationship between the work and a generated artist,

adding a SAMEAS for these two artists. The confidence values for facts found in the

input are generated from a Normal(.7, .2) distribution while inconsistent facts have lower

confidence values generated from a Normal(.3, .2) distribution. The high variance in these

2http://linkedbrainz.c4dmpresents.org/content/rdf-dump

42

http://linkedbrainz.c4dmpresents.org/content/rdf-dump

distributions ensures a significant overlap. For the SAMEAS the similarity values are

generated from a Normal(.9, .1) distribution. In all cases, the distribution is thresholded

to the [0, 1] range. We summarize important data statistics in Table 4.1.

NELL

The goal of NELL is to iteratively generate a knowledge base. In each iteration, NELL

uses facts learned from the previous iteration and a corpus of web pages to generate a

new set of candidate facts. NELL selectively promotes those candidates that have a high

confidence from the extractors and obey ontological constraints with the existing knowl-

edge base to build a high-precision knowledge base. We present experimental results on

the 165th iteration of NELL, using the candidate facts, promoted facts and ontological

relationships that NELL used during that iteration. We summarize the important statistics

of this dataset in Table 4.1. Due to the diversity of the web, the data from NELL is larger,

includes more types of relations and categories, and has more ontological relationships

than our synthetic data.

NELL uses diverse extraction sources, and in our experiments we use distinct

predicates CANDLBLT and CANDRELT for the NELL sources CBL (Constraint Based

Learner), CMC (Coupled Morphological Classifier), CPL (Coupled Pattern Learner),

Morph (Morphological Patterns), and SEAL (Structured Extraction) while the remain-

ing sources, which do not contribute a significant number of facts, are represented with

CANDLBL and CANDREL predicates. In addition to candidate facts, NELL uses a heuris-

tic formula to “promote” candidates in each iteration of the system into a knowledge base,

43

however these promotions are often noisy so the system assigns each promotion a con-

fidence value. We represent these promoted candidates from previous iterations as an

additional source with corresponding candidate predicates.

In addition to data from NELL, we use data from the YAGO database (Suchanek

et al., 2007) as part of our entity resolution approach. Our model uses a

SAMEAS predicate to capture the similarity of two entities. To correct against the mul-

titude of variant spellings found in the data, we use a mapping technique from NELL’s

entities to Wikipedia articles, described in more detail below. We then define a similarity

function on the article identifiers, which in this case are URLs, using the similarity as the

soft-truth value of the SAMEAS predicate.

The YAGO database contains entities which correspond to Wikipedia articles, vari-

ant spellings and abbreviations of these entities, and associated WordNet categories. Our

approach to entity resolution matches entity names in NELL with YAGO entities. We

perform selective stemming on the NELL entities, employ blocking on candidate labels,

and use a case-insensitive string match to find corresponding YAGO entities. Once we

find a matching set of YAGO entities, we can generate a set of Wikipedia URLs that map

to the corresponding NELL entities. We can judge the similarity of two entities by com-

puting a set-similarity measure on the Wikipedia URLs associated with the entities. For

our similarity score we use the Jaccard index, the ratio of the size of the set intersection

and the size of the set union.

44

Table 4.1: Summary of dataset statistics for NELL and MusicBrainz, including (a) the
number of candidate facts in input data, the distinct relations and labels present, and (b)
the number of ontological relationships defined between these relations and labels

(a)

NELL MusicBrainz

Cand. Label 1.2M 320K
Cand. Rel 100K 490K

Promotions 440K 0

Unique Labels 235 19
Unique Rels 221 8

(b)

NELL MusicBrainz

DOM 418 8
RNG 418 8
INV 418 2
MUT 17.4K 8

RMUT 48.5K 0
SUB 288 21

RSUB 461 2

4.4.2 Learning Model Weights from Training Data

Our PSL model for knowledge graph identification defines a number of rules with weights

that capture the importance of the rule in the probability distribution over knowledge

graphs. While these weights can be manually specified, a more powerful approach is

to learn the value of these weights from training data. The general methods for weight

learning in PSL were introduced in (Bach et al., 2013), however the knowledge graph

setting introduces some new considerations.

A complication of learning from training data is that, given the vast number of po-

tential facts in knowledge graph, obtaining labeled data with sufficient coverage over the

45

facts in the knowledge graph can be difficult. Since most knowledge graph construction

tasks are focused on a single, large dataset, weight learning takes place in a transductive

setting and it can be difficult to separate a training network from the knowledge graph.

Yet another problem is sparsity in knowledge graphs, which creates skew in the learn-

ing problem due to the large number of negative labels for false relationships and labels,

which overwhelm the number of true labels and relationships.

We deal with the challenges of weight learning by carefully defining a training setup

that efficiently uses training data by adopting a semi-supervised approach to learning. We

define a training network by creating a ground graphical model using the facts in the

training set. In addition to these facts, we approximate the contextual knowledge of the

training data with the 2-hop neighborhood of the training variables, which we refer to as

the training network.

Since the collective KGI model will include facts that are not part of the training

network, we modify the model to scope the rules so that only those rules pertaining to

the facts in the training network are grounded, and additional variables are not inferred.

Next, we extend the training data to achieve greater coverage by performing inference for

the training network using initial model weights while conditioning on the training set.

This inference assigns values to the unknown variables in the 2-hop neighborhood of the

training data. This inferred knowledge graph constitutes the labels for weight learning.

We learn weights using the maximum likelihood estimation approach implemented

in PSL as reported in Bach et al. (2013). The MLE weight learning attempts to optimize

weights to recover the full training network (both the training set and the Markov blanket)

using the candidate facts and a small set of seed observations. While this approach could

46

be extended by using an iterative estimation-maximization algorithm that repeatedly in-

fers the training network and the optimizes the model weights, we found a straightforward

approach reduces training time while maintaining the weight quality.

4.4.3 Open-World vs Closed-World Evaluation Setting

In our experiments using NELL, we consider two scenarios. The first setting is based on a

network similar to the training network used for weight learning discussed in the previous

subsection. This setting is based on previous work by Jiang et al. (2012), and was defined

to improve scalability by generating a grounding of the graphical model based on the test

set, determining a 2-hop neighborhood of the test set, and then only including atoms that

are not trivially satisfied in this grounding. In practice, this produces a neighborhood that

is distorted by omitting atoms that may contradict those in the test set.

For example, if ontological relationships such as RNG(hasCapital,country)

and MUT(country, city) are present, the test set atom

LBL(kyrgyzstan,country) would not introduce LBL(kyrgyzstan,city) or

REL(kyrgyzstan, Bishkek, hasCapital) into the neighborhood, even if support-

ive or contradictory data were present in the input candidates. By removing the ability to

reason about supportive and contradictory information, we believe this evaluation setting

diminishes the true difficulty of the problem. We validate our approach on this setting,

but also present results from a more realistic setting.

In the second scenario we perform inference independently of the test set, lazily

generating truth values for atoms supported by evidence. This lazy inference approach

47

performs repeated inferences. Each iteration uses the available evidence and previous in-

ferences and grounds out the model, treating any inference below a soft-truth threshold

of .01 as false (PSL’s default behavior). In the context of the previous example, initially

the test fact LBL(kyrgyzstan,country) would only be supported by candidate ex-

tractions for that particular fact. However, in subsequent iterations the inferred value of

LBL(kyrgyzstan,country) would be influenced by other candidates not found in

the test set. For example, a contradictory candidate CANDLBL(kyrgyzstan,city)

could diminish this truth value, while a candidate REL(kyrgyzstan, Bishkek,

hasCapital) ould increase the truth value. This iterative process of inference and

grounding is repeated until no new groundings are added to the model. This second set-

ting allows us to infer a complete knowledge graph similar to the MusicBrainz setting.

4.4.4 Results for Closed-World Settings

MusicBrainz

Our experiments on MusicBrainz data attempt to recover the knowledge graph despite

the addition of noise which introduces uncertainty for facts, removes true information

and adds spurious labels and relations. The synthetic modifications allow us to retain

information about the true, complete knowledge graph and thus enumerate the full set of

target facts. We evaluate the results by comparing to the true knowledge graph used to

generate the data, and include false labels corresponding to spurious data introduced.

In our experiments, we represent the noisy relations and labels of the knowledge

graph as candidate facts in PSL with the predicates CANDLBL and CANDREL. Our exper-

48

Table 4.2: A comparison of knowledge graph identification methods on MusicOntology
data shows knowledge graph identification effectively combines the strengths of graph
identification and reasoning with ontological information and produces superior results.

Method AUC Prec Recall F10.5 F10.0

Baseline 0.672 0.946 0.477 0.634 0.788
PSL-EROnly 0.797 0.953 0.558 0.703 0.831
PSL-OntOnly 0.753 0.964 0.605 0.743 0.832

PSL-KGI-Complete 0.901 0.970 0.714 0.823 0.919

iments use quadratic potentials, and static weights for all rules, where wCL = wCR = 1,

wEL = wER = 25 and wO = 100. We evaluate a number of variants of the KGI model

on their ability to recover this knowledge graph. We measure performance using a num-

ber of metrics: the area under the precision-recall curve (AUC), as well as the precision,

recall and F1 score at a soft-truth threshold of .5 (the intuitive boundary between true and

false in soft logic). Due to the high variance of confidence values and large number of

true facts in the ground truth, the maximum F1 value occurs at a soft-truth threshold of 0,

where recall is maximized, for all variants, and we report these results for completeness.

These results are summarized in Table 4.2.

The first variant we consider uses only the input data, setting the soft-truth value

equal to the generated confidence value as an indicator of the underlying noise in the

data. The baseline results use only the candidate rules we introduced in subsection 4.2.1.

We improve upon this data by adding either the entity resolution rules introduced in sub-

section 4.2.2, which we report as PSL-EROnly, or with weighted rules capturing onto-

logical constraints introduced in subsection 4.2.3. Finally, we combine all the elements

of knowledge graph identification introduced in Section 4.2 and report these results as

PSL-KGI-Complete.

49

Table 4.3: Comparing against previous work on the NELL dataset, knowledge graph
identification using PSL demonstrates a substantive improvement.

Method AUC Prec Recall F1

Baseline 0.873 0.781 0.881 0.828
NELL 0.765 0.801 0.580 0.673
MLN 0.899 0.837 0.837 0.836

PSL-KGI 0.904 0.767 0.956 0.851

The results on the baseline demonstrate the magnitude of noise in the input data;

less than half the facts in the knowledge graph can be correctly inferred. Reasoning jointly

about co-referent entities, as in graph identification, improves results. Using ontological

constraints, as previous work in improving extraction in this domain has, also improves

results as well. Comparing these two improvements, adding entity resolution has a higher

AUC, while ontological constraints show a greater improvement in F1 score. However,

when these two approaches are combined, as they are in knowledge graph identification,

results improve dramatically. Knowledge graph identification increases AUC, precision,

recall and F1 substantially over the the other variants, improving AUC and F1 over 10%

compared to the more competitive baseline methods. Overall, we are able to infer 71.4%

of true relations while maintaining a precision of .97. Moreover, a high AUC of .901

suggests that knowledge graph identification balances precision and recall for a wide

range of parameter values.

NELL

While results on data with synthetic noise confirm our hypothesis, we are particularly

interested in the results on a large, noisy real-world dataset. We apply knowledge graph

50

identification to data from iteration 165 of NELL, a dataset that has been previously stud-

ied and for which has a large, manually-labeled evaluation set has been collected (Jiang

et al., 2012). We compare KGI to previous work, and a summary of results is shown in

Table 4.3. Additional results on this dataset can be found in Appendix B

The first method we compare to is a baseline similar to the one used in the Mu-

sicBrainz results where candidates are given a soft-truth value equal to the extractor con-

fidence (averaged across extractors when appropriate). Since this model is untrained, we

report results at a soft-truth threshold of .45 which maximizes F1 and provides the most

competitive baseline performance.

We also compare the default strategy used by the NELL project to choose candidate

facts to include in the knowledge base. Their method uses the ontology to check the

consistency of each proposed candidate with previously promoted facts already in the

knowledge base. Candidates that do not contradict previous knowledge are ranked using

a heuristic rule based on the confidence scores of the extractors that proposed the fact, and

the top candidates are chosen for promotion subject to score and rank thresholds. Note

that the NELL method includes judgments for all input facts, not just those in the test set.

The third method we compare against is the best-performing MLN model from

Jiang et al. (2012), that expresses ontological constraints, and candidate and promoted

facts through logical rules similar to those in our model. The MLN uses additional predi-

cates that have confidence values taken from a logistic regression classifier trained using

manually labeled data. The MLN uses hard ontological constraints, learns rule weights

considering rules independently and using logistic regression, scales weights by the ex-

tractor confidences, and uses MC-Sat with a restricted set of atoms to perform approx-

51

imate inference, reporting output at a 0.5 marginal probability cutoff, which maximizes

the F1 score. The MLN method only generates predictions for a 2-hop neighborhood

generated by conditioning on the values of the query set, as described earlier.

Our method, PSL-KGI, uses PSL with quadratic, weighted rules for ontological

constraints, entity resolution, and candidate and promoted facts as well as incorporating a

prior. We also incorporate the predicates generated for the MLN method for a more equal

comparison. We learn weights for all rules, including the prior, using a voted perceptron

learning method. The weight learning method generates a set of target values by running

inference and conditioning on the training data, and then chooses weights that maximize

the agreement with these targets in absence of training data. Since we represent extractor

confidence values as soft-truth values, we do not scale the weights of these rules. Using

the learned weights, we perform inference on the same neighborhood defined by the query

set that is used by the MLN method. We report these results, using the standard soft-

truth threshold of 0.5, as PSL-KGI. As Table 4.3 shows, knowledge graph identification

produces modest improvements in both F1 and AUC.

4.4.5 Results for Model Ablation Study

To better understand the contributions of various components of our model, we explore

variants that omit one aspect of the knowledge graph identification model. In each case,

we learn new weights for the remaining rules, and perform inference in the closed-world

setting, and then measure performance on the test set. The results of the ablation study

are shown in Table 4.4, while the precision-recall tradeoff for each method is shown in

52

Table 4.4: Comparing variants of PSL graph identification show the importance of onto-
logical information, but the best performance is achieved when all of the components of
knowledge graph identification are combined.

Method AUC Prec Recall F1

Baseline 0.873 0.781 0.881 0.828
PSL-NoSrcs 0.900 0.770 0.955 0.852
PSL-NoER 0.899 0.778 0.944 0.853

PSL-NoOnto 0.887 0.813 0.839 0.826
PSL-KGI 0.904 0.777 0.944 0.853

Fig. 4.2, and detailed results for each ablated method can be found in Appendix B.

The Baseline method uses the same methodology in the previous section, and does

not include any collective knowledge graph identification rules. PSL-NoSrcs removes

predicates CANDLBLT and CANDRELT for different candidate sources, replacing them

with a single CANDLBL or CANDREL with the average confidence value across sources.

PSL-NoER removes rules from subsection 4.2.2 used to reason about co-referent entities.

PSL-NoOnto removes rules from subsection 4.2.3 that use ontological relationships to

constrain the knowledge graph. We compare these methods to the full knowledge graph

identification model, PSL-KGI.

The Baseline method had the worst performance, since it relies exclusively on ex-

tractor confidences to construct the knowledge graph. Examining the results, we find that

the facts where the Baseline method has the greatest disagreement with our KGI model

are those requiring ontological knowledge. For example, the Baseline method infers the

teamWonTrophy for the ”trophy” playoffs for many teams (e.g. cubs, packers,

colts). While it may be true these teams won the playoffs, playoffs do not have label

trophy, and so these facts are not germane for the relation.

53

Removing source information from the model had a minor impact on model perfor-

mance, resulting in lower precision, higher recall, and lower F1 and AUC. Examining the

most salient differences in the inferred knowledge bases, the major difference is that the

full KGI model infers much higher truth values for a number of labels. For example, the

full KGI model infers that twilight, sideways and doctor zhivago have labels

movie and creativework while the NoSrcs model has much lower truth values for

these facts. This may be the result of information loss when a specialized, high-precision

extractor for a particular domain is merged with lower precision extractors.

When the rules for entity resolution are removed from the model, the results mirror

those of the full KGI model with a minor increase in precision and a minor decrease in

AUC. Sampling prominent differences from the results, we find that the KGI model that

includes entity resolution is able to extend inferences to aliases and variant names for

the same entity. For example, the full KGI model determines that ampalaya, more fre-

quently referred to as ”bitter melon”, is a food and vegetable. Another example is that the

full KGI model infers that the entity bell centre, a sports complex in Montreal more

commonly referred to following the French convention, as ”Centre Bell”, is a building

and attraction. While these inferences show the importance of entity resolution, the small

difference in results suggest that the low coverage of entity resolution information in the

dataset prevents a more significant impact on the results.

Finally, when rules for the ontological relationship are removed from the model,

both the AUC and recall drop substantially, but precision increases. Analyzing the re-

sults of the two methods, we notice that the NoOnto method infers facts that violate

ontological labes (as expected). An example of such an inference is that the entity

54

Figure 4.2: This figure shows the precision-recall curve for the different knowledge graph
construction models. The baseline model, which does not use any collective reasoning,
severely underperforms all other approaches. Models that omit the confidence informa-
tion of uncertain sources (orange squares), entity resolution (yellow exs), or ontological
information (purple diamonds) do not perform as well as knowledge graph identifica-
tion (green hexagons). Complete knowledge graph identification (blue circles) in the
open-world setting, infers a complete knowledge graph and shows superior performance,
except at high precision cutoffs.

community college plays the sport baseball. However, the overgeneralization of

community colleges prevents this fact from being a useful addition to the knowledge

base. In contrast, the full KGI model is able to learn from existing relations and infer

labels for the entities. For example, the KGI model infers that comiskey park and

cardiff international arena are both locations, presumably using domain and

range relationships from other facts.

55

Table 4.5: Producing a complete knowledge graph reduces performance on the test set,
suggesting that the true complexity of the problem is masked when generating a limited
set of inferences.

Method AUC Prec Recall F1

NELL 0.765 0.801 0.580 0.673
PSL-KGI-Complete 0.891 0.825 0.872 0.848

PSL-KGI 0.904 0.767 0.956 0.851

4.4.6 Results for Open-World Settings

One drawback of our comparisons to previous work is the restriction of the model to a

small set of inference targets. The construction of this set obscures some of the challenges

presented in real-world data, such as conflicting evidence, as well as strengths from col-

lective modeling, such as supportive inferences resulting from parsimony in a large net-

work of facts. For a fuller exploration of the knowledge graph construction problem, we

assess the performance of our method in a setting without predefined inference targets. In

this setting, the inference problem does not restrict potentially contradictory inferences

or supportive inferences. We ran knowledge graph identification using the same learned

weights as the closed-world setting, and allowed lazy inference to produce a complete

knowledge graph, as detailed in subsection 4.4.3. Results for this setting are shown in

Table 4.5, with more detailed results in Appendix B.

The resulting inference produces a total of 4.9M total facts, which subsumes the

test set. We report results on the test set as PSL-KGI-Complete. Allowing the model to

optimize on the full knowledge graph instead of just the test set reduced the performance

as measured by the particular test set relative to the KGI model in the closed-world set-

56

ting, suggesting that the noise introduced by conflicting evidence does have an impact on

results. However, when comparing to the only other method that operates in the open-

world setting, the NELL fact promotion strategy, our model improves all performance

metrics and has substantially higher recall. One reason the NELL promotion strategy

may perform poorly is that it attempts to restrict newly inferred facts to those consistent

with its existing knowledge base, and does not allow revising existing beliefs. As a result,

erroneous facts introduced early in the knowledge base construction process can hamper

future efforts to expand the knowledge base. In contrast, our approach puts new extrac-

tions in the same context with facts learned earlier, and if a preponderance of evidence

supports the new extractions over the old facts, the inferred truth value can remove such

erroneous facts.

We also compare two knowledge bases learned by the open-world version

of KGI, KGI-Complete, and the closed world version, KGI. A number of facts

that have high truth values in the KGI-Complete model are missing from the KGI

model because they are out of the scope of the testing set. Prominent examples

include REL(lemur, jamie callan, mlsoftwareauthor) and REL(bruins,

banknorth garden, teamhomestadium). In contrast, a handful of facts that

have high scores in the KGI model are not inferred or have low truth values in

the KGI-Complete model. Some of these facts seem to be useful additions to the

knowledge graph, for example REL(rfk memorial stadium, washington,

stadiumincity) and REL(lusaka, zambia, cityincountry). However, a

number of erroneous facts also appear in this list, such as REL(boston celtics,

los angeles, teamplaysincity), REL(pittsburgh steelers,

57

baltimore, teamplaysincity) as well as overgeneralizations such as

REL(georgia tech, basketball, teamplayssport). In summary, the

differences between the two approaches are a mixed bag; KGI-Complete infers facts

beyond the scope of the narrowly defined test set, and achieves the greater coverage de-

sirable in knowledge graph construction, while also weeding out some clearly erroneous

facts, but along the way also misses a number of valid facts.

Fig. 4.2 highlights one of the shortcomings of the complete knowledge graph in-

ference setting – the model has difficulty producing facts when a high-precision cutoff

is necessary. At the highest truth value threshold, KGI-Complete achieves a precision

of 0.93 (and recall of 0.37), while the KGI model from the closed world setting has a

precision of 0.99 (and a recall of 0.28). One reason for the lower precision may be that

the KGI model is trained specifically to maximize the performance on a small network

of facts, while no similarly straightforward training objective can be constructed for the

open-world setting. A second issue is that many facts restricted from closed-world infer-

ence can appear with small truth values in open-world inference, lowering the truth values

of inferred facts and preventing the same stratification of extremely high truth values that

occur in the closed-world setting.

4.5 Discussion

In this chapter, we show how to address the requirements of the knowledge graph identifi-

cation problem setting. Our contributions are (1) implementing straightforward and inter-

pretable model that performs the essential tasks in graph identification – entity resolution,

58

collective classification, and link prediction; (2) incorporating the important properties of

the input data used to construct a knowledge graph: uncertainty and statistical features

from the information extraction system and logical constraints between facts found in the

ontology; (3) demonstrating how the model we have developed can be transformed into

a probability distribution over possible knowledge graphs; (4) tackling the practical chal-

lenges in inferring knowledge graphs such as weight learning and open-world problem

settings; and (5) performing extensive evaluation of our knowledge graph identification

model on multiple datasets that demonstrates the value of the various components of

the model, compares to existing state-of-the-art methods, and validates the hypothesis of

knowledge graph identification. We also identify a number of promising extensions to

this work, such as modeling a richer set of ontological constraints mentioned in Section

3.1, different and possibly more sophisticated approaches to weight learning, and deeper

models for entity resolution, which we tackle in the next chapter.

59

Chapter 5: Entity Resolution for Knowledge Graphs

In Chapter 3 we provided examples of entity ambiguity in knowledge extraction systems,

which motivated the problem of entity resolution. Next, in Chapter 4 we demonstrated

how ontological knowledge of co-referent entities or measures of entity similarity can be

exploited to improve the results of knowledge graph construction. The problem of en-

tity resolution has been a longstanding challenge that has lead to significant research in

many communities, including databases, information retrieval, and natural language pro-

cessing.However, entity resolution in knowledge graphs presents additional opportunities,

complexities and challenges. We analyze two key facets of entity resolution problems

arising from the structure of knowledge graphs: using knowledge graph features and sup-

porting collective dependencies in co-reference judgments. In this section, we discuss the

problems confronting entity resolution in knowledge graphs and develop a general model

adaptable to many entity resolution tasks and scenarios.

5.1 Problem Definition

The general problem of entity resolution is to take a set of references, such as diverse

string representations of names, and produce a mapping from these references to entities,

which represent a single concept. Entity resolution can be formulated as a clustering

60

problem, where each cluster of references represents an entity, or as a pairwise matching

problem, where two references are assessed for equality and a connected component of

equal references represents an entity. In both formulations, a key problem is measuring

the similarity of references, either to determine cluster coherence or to produce pairwise

co-reference predictions.

The earliest entity resolution research focused on developing specialized similarity

measures for strings and attributes. More recent work in entity resolution has focused

on using relationships between references to generate relational features. For example,

Bhattacharya and Getoor (2007) introduce relational features and similarities, and using

a collective relational clustering approach, demonstrate superior results to non-collective

approaches. One key requirement for knowledge graph entity resolution is the ability

to translate knowledge graph features, such as attributes, types, and the many different

relationships between entities, into features that can be used to determine the similarity

of references.

A second key requirement for entity resolution in knowledge graphs is correctly

handling collective dependencies in entity resolution decisions. Entity resolution prob-

lems are inherently collective due to transitivity or functionality constraints of equality.

More formally, when resolving a set of references, a transitivity constraint requires that

if A and B are co-referent, and B and C are co-referent, then A and C. A functionality

constraint can exist in a setting where a bijective mapping between references in two sets,

S and T, is desired, if A ∈ S and B ∈ T are co-referent, then, for all C ∈ T, A and

C cannot be co-referent. While transitivity and functionality are standard examples of

collective entity resolution challenges, the knowledge graph setting often includes more

61

sophisticated examples of collective reasoning. For example, if we have two knowledge

graphs that include references with relations pertaining to genealogical information, we

might have references such as: REL(E1, O1, parent), REL(E2, O2, parent), then de-

termining that E1 and E2 are co-referent can provide useful information that O1and O2are

potentially co-referent as well.

This discussion hints at the diversity of entity resolution problems in knowledge

graphs. Different phases of knowledge graph construction may face unique entity resolu-

tion challenges. We enumerate three general cases where entity resolution is necessary in

knowledge graphs. Entity resolution may be required to:

1. resolve ambiguity in a set of candidate extractions

2. incorporate new extractions into an existing knowledge graph

3. combine information from two or more knowledge graphs

We discuss each of these scenarios in detail in the following paragraphs.

5.1.1 Ambiguity In Candidate Extractions

In previous chapters, the emphasis has been on creating a knowledge graph using a set

of candidate facts generated by information extraction techniques. These information

extraction techniques are subject to many sources of ambiguity. Each technique may pro-

cess the same information differently, yielding many references from the same source

material. Furthermore, the extraction source material may be inherently ambiguous, us-

ing different references for the same entity within a document, such as partial names or

titles. Another common problem is anaphora, such as when a pronoun is used to with an

ambiguous referent. Finally, the extractions are drawn from a corpus of documents, and

62

each document may have variations in the representation of references, such as alternate

spellings, prefixes, suffixes, and abbreviations. As we have seen, in addition to the noise

in entity references, noise also exists in attributes and relations ascribed to each reference.

In this scenario, the goal is to cluster a set of noisy references with noisy attributes and

relations into a coherent set of entities.

5.1.2 Incorporating New Extractions Into a Knowledge Graph

A somewhat simpler problem is extending an existing knowledge graph using new extrac-

tions. In this setting, the goal is to map each reference to an existing entity in the knowl-

edge graph, or introduce a new entity into the knowledge graph. One strategy for dealing

with new entities that do not exist in the knowledge graph is skolemization, where each

potential new entity is given a unique identifier. References can now be matched with ex-

isting entities or the new, skolemized entities in the knowledge graph, casting the problem

into the well-studied task of surjective bipartite matching from references to entities.

Through this formulation, the added constraint that each reference must match a

single entity can often simplify the entity resolution process. While the attributes and

relationships of the extracted reference may be noisy, as motivated in the previous sce-

nario, the attributes and relationships of entities in the knowledge graph are expected to

be highly reliable. As a result, relational features and attribute similarity play a more

significant role in determining whether a reference can be resolved to an existing entity in

the knowledge graph, or due to conflicting information, the reference should be added as

a new entity with different attributes and relations.

63

5.1.3 Combining Information From Multiple Knowledge Graphs

The final knowledge graph entity resolution scenario adheres most closely to the tradi-

tional approaches to entity resolution, where the goal is to combine information from two

or more databases. In this setting, the goal is to find a mapping between entities in knowl-

edge graphs, and then combine the attributes and relations of these entities. This problem

can be formulated as mapping each knowledge graph to a “canonical” knowledge graph

or instead be cast as a pairwise matching task between each pair of knowledge graphs.

The latter formulation can introduce additional complexity in the form of transitivity con-

straints for equality across all knowledge graphs. These constraints can add new features

for entity resolution, but may also make the desired mapping more computationally de-

manding. A further complication in this setting is that the knowledge graphs may use

different schemas and ontologies. This problem is not covered in this chapter, but the

development of standard ontologies and the problems of ontology matching or schema

mapping have been extensively researched.

While these three entity resolution settings each present unique challenges, our goal

is to provide a unified model for entity resolution. The goal of this model is to adapt to the

diverse circumstances present in knowledge graph construction tasks. In the next section,

we outline the structural elements of this model, and then introduce a probabilistic model

for entity resolution that incorporates these elements into an entity resolution system.

64

5.2 Approach

The crucial aspect that distinguishes knowledge graphs from standard entity resolution

problems is the rich and regular structure of the knowledge graph. Our goal is to leverage

this structure to build an entity resolution model that is easy to understand and customize,

while still capturing the rich information present in the knowledge graph. We consider

two dimensions to the entity resolution model: feature granularity and collective infer-

ence. First, we organize the features in knowledge graphs based on the granularity of

knowledge required. While the most basic features rely on string similarity or generic

rules of functionality and transitivity, more complicated features involve new entities, at-

tribute similarity, equivalence classes of relations, and domain-specific patterns. Each

of these features can be classified as local (involving a single co-reference decision) or

collective (imposing a dependency between two or more co-reference decisions). Table

5.1 summarizes the knowledge graph features used by the entity resolution methods, and

the following subsections delve more deeply into each of these feature sets. For each

type of feature, we provide examples of corresponding logical rules. These rules can be

combined in a probabilistic modeling framework, such as PSL, to produce a collective

probabilistic graphical model for entity resolution.

5.2.1 Local and Collective Knowledge Graph Features

As motivated earlier, there are two broad classes of features in knowledge graphs: local

and collective. Local features are those that can be computed for a pair of entities (or

references) independently of the co-reference decisions of other entities in the knowledge

65

Table 5.1: Knowledge graph features categorized based on collective dependencies and
level of granularity

local collective

basic similarity scores transitive, functional, sparsity
new entity new entity prior new entity penalty (sparsity)
abstract KG type matching, type penalty relation matching/equivalence
domain-specific restricted type matching restricted relation matching

graph. Examples of local features include string similarity of names, image similarity of

photographs, type agreement, and attribute agreement. One key characteristic for a local

feature is that its value does not depend on the entity resolution decisions for other pairs

of entities. This characteristic allows local features to be computed once for a pair of

features and reused. Consequentially, relying on local features for entity resolution can

decrease computational overhead and improve entity resolution performance.

In contrast to local features, collective features involve dependencies between co-

reference decisions, and due to these dependencies are more difficult to compute. The

transitivity and functionality constraints in Section 5.1 are examples of common collec-

tive features that have been used in entity resolution. However, the structure of knowl-

edge graphs allow many more collective features to be generated using relationships be-

tween entities. Knowledge graph features can be abstract, such as the overlap of object-

arguments for a reference’s relations, or very concrete, such as the link between parents

and children in the earlier example.

66

5.2.2 Knowledge Graph Models at Different Granularity

In this section, we develop components for a knowledge graph entity resolution model.

The components have been classified into four categories:

1. basic features that are common to all entity resolution scenarios

2. new entity features that helpful when adding new entities into a knowledge graph

3. abstract KG features that are universal across many knowledge graph structures

4. domain-specific features that are designed to resolve a particular class of entities

In the subsequent sections, we will introduce logical rules for each type of feature,

distinguishing between local and collective rules. The goal of these rules is to determine

a pairwise resolution between two entities, denoted by SAME(E1, E2) for entities E1and

E2. Note that the SAME predicate is distinct from the SAMEAS predicate, which is used

to capture ontological information, such as owl:sameAs.

Since knowledge graphs routinely contain millions of entities, assessing pairwise

equality between all entities is infeasible. A common technique to avoid the polynomial

explosion of entity matching is blocking, which uses a simple heuristic to produce po-

tential entity matches. Using this smaller set of possible resolutions can substantially

improve scalability. In the following rules, we will represent a blocked pair of entities

with the predicate CANDSAME . Blocking can also be used to restrict matches based on

the entity resolution scenario. For example, in Section 5.1.2 where the goal is to map

references in a set of extractions to an existing knowledge graph, blocking can be used

to scope entity resolution to only allow matches between extractions and the knowledge

graph, disallowing matches within the extractions or within the knowledge graph.

67

5.3 Modeling Knowledge Graph Entity Resolution

5.3.1 Basic Features

Rules for Local Features

Basic features are those common to all entity resolution scenarios, such as similarity

functions and prior probabilities. we introduce three rules corresponding to basic local

features. Rule 5.1 and Rule 5.2 are priors for SAME. Often, a negative prior (5.1) is

useful to implement a default policy that entities are not co-referent unless supported by

evidence. A positive prior can also be useful in some models to establish a baseline match

confidence for two entities that have been blocked.

The final basic local rule uses a similarity function, SIM, to assess whether two enti-

ties are co-referent. In general, the similarity function can depend on the representation of

the entities (e.g. images, sound files, or textual representations). A great deal of research

in entity resolution has been devoted to designing effective similarity functions for en-

tity resolution. Examples of popular similarity functions are Levenstein (Navarro, 2001;

Wagner and Fischer, 1974), Jaro (Jaro, 1995), Jaro-Winkler (Winkler, 1999), Monge-

Elkan (Elkan and Monge, 1996), Fellegi-Sunter (Fellegi and Sunter, 1969), Needleman-

Wunsch, and Smith-Waterman (Durbin et al., 1998). In Rule 5.3 the similarity function

is not explicitly specified, but a popular similarity function or combination of functions

(Bilenko and Mooney, 2003) can be used to determine similarity.

¬SAME(E1, E2). (5.1)

68

CANDSAME(E1, E2) (5.2)
⇒ SAME(E1, E2).

CANDSAME(E1, E2) ∧ SIM(E1, E2) (5.3)
⇒ SAME(E1, E2).

Rules for Collective Features

The collective basic features incorporate the fundamental properties of equality: sym-

metry (Rule 5.4) and transitivity (Rule 5.5). Symmetry enforces the constraint that the

order of the arguments to SAME do not matter. Transitivity, discussed in Section 5.1,

ensures that the co-reference process generates tight clusters of entities by encouraging

co-reference cliques. Finally, Rule 5.6 has an opposite effect, encouraging sparsity by

promoting functionality for the SAME predicate. Not all entity resolution scenarios re-

quire functionality for co-references, but those discussed in Section 5.1.2 and Section

5.1.3 can benefit from such constraints.

SAME(E1, E2) (5.4)
⇒ SAME(E2, E1).

CANDSAME(A,B) ∧ CANDSAME(B,C) (5.5)
∧ CANDSAME(A,C)

∧ SAME(A,B)

∧ SAME(B,C)

⇒ SAME(A,C).

CANDSAME(A,B) ∧ CANDSAME(A,C) (5.6)
∧ SAME(A,B)

⇒ ¬SAME(A,C).

69

5.3.2 New Entity Features

Rules for Local Features

In problem settings where entity resolution is matching with respect to an existing knowl-

edge graph, such as Section 5.1.2 and Section 5.1.3, the appropriate entity may not exist

in the target knowledge graph. In these settings, we generate a new entity placeholder

for each source reference. This placeholder will have no inherent relations, types, or at-

tributes and will have a default similarity value. we designate these entities using the

NEWENTITY predicate. Rule 5.7 establishes a prior that any reference matches a new

entity. In subsequent rules, the NEWENTITY will be used to scope the rule to existing en-

tities, which avoids penalizing new entity matches based on relations, types and attributes

which are missing.

CANDSAME(E1, E2) ∧ NEWENTITY(E1) (5.7)
⇒ SAME(E1, E2).

Rules for Collective Features

While a prior can be helpful, the desired behavior in entity resolution systems is to add a

new entity only when no other entity in the knowledge graph appears to match. Rule 5.8

prevents a new entity from matching when a previously existing entity is a strong match

for a reference.

SAME(E1, E2) ∧ CANDSAME(E1, E3) (5.8)
∧ NEWENTITY(E3)

⇒ ¬SAME(E1, E3).

70

5.3.3 Abstract Knowledge Graph Features

Abstract knowledge graph features use the relational structure and attributes shared by

all knowledge graphs. The key strength is that these features are broadly applicable to

any knowledge graph entity resolution problem. In scenarios such as Section 5.1.1, ab-

stract knowledge graph rules can be used to collectively infer relations and labels in the

knowledge graph while simultaneously determining entity co-references. However, one

drawback of abstract knowledge graph rules is that their broad applicability may limit

their usefulness. Rules that are agnostic to the particular labels and relations in a knowl-

edge graph may have difficulty prioritizing which labels and relations are useful for entity

resolution. One potential solution to this issue when ample training data is available is to

introduce rules and then learn rule weights for each label and relation separately.

Rules for Local Features

Knowledge graph entities have associated properties such as attributes, labels, and type

information that provide the basis for local features. Rule 5.9 specifies that these proper-

ties agree for two entities. Since many potential candidate matches may share the same

properties, the rule is mediated by the candidate similarity, supporting similar matches

more strongly than dissimilar matches. While entities with agreeing properties are a sig-

nal of co-reference, properties that are missing or explicitly disagree can be strong signals

against co-reference. Rule 5.10 requires that co-referent entities share properties, but pro-

vides an exception for new entities which lack properties. Note that a symmetric rule for

the second entity is not shown. These rules are most useful in entity resolution settings

where knowledge graph information is relatively complete, whereas noisy or incomplete

71

extractions may hamper entity resolution. Rule 5.11 provides a stronger signal by in-

corporating the knowledge graph ontology, disallowing entities with mutually-exclusive

properties from matching. Even when extractions are noisy and properties incomplete,

this signal can provide strong evidence against a potential co-reference match.

CANDSAME(E1, E2) ∧ SIM(E1, E2) (5.9)
∧ LBL(E1, L)

∧ LBL(E2, L)

⇒ SAME(E1, E2).

CANDSAME(E1, E2) ∧ LBL(E1, L) (5.10)
∧ ¬LBL(E2, L)

∧ ¬NEWENTITY(E2)

⇒ ¬SAME(E1, E2).

CANDSAME(E1, E2) ∧ LBL(E1, L1) (5.11)
∧ LBL(E2, L2)

∧ MUT(L1, L2)

⇒ ¬SAME(E1, E2).

Rules for Collective Features

The collective abstract knowledge graph entity resolution parallel the local rules, but op-

erate over relations and involve pairs of co-referent entities. Rule 5.12 requires that two

co-referent entities have the same relation with co-referent objects. The collective nature

of the rule introduces a dependence between entities that participate in the same relation

across knowledge graphs, supporting co-references between the subjects and objects of

the relation. Rule 5.13 has the opposite effect, penalizing co-references for matches be-

tween existing entities that do not share the same relations. Echoing the previous remarks

on knowledge graph rules, these rules have limited usefulness in noisy or incomplete

72

knowledge graphs where many relations may be missing. However, Rule 5.14 uses the

ontology to find a stronger signal in mutually-exclusive relations.

CANDSAME(E1, E2) ∧ CANDSAME(O1, O2) (5.12)
∧ SIM(E1, E2)

∧ SAME(O1, O2)

∧ REL(E1, O1, R)

∧ REL(E2, O2, R)

⇒ SAME(E1, E2).

CANDSAME(E1, E2) ∧ CANDSAME(O1, O2) (5.13)
∧ SAME(O1, O2)

∧ ¬REL(E1, O1, R)

∧ ¬NEWENTITY(E1)

∧ ¬NEWENTITY(O1)

∧ REL(E2, O2, R)

⇒ ¬SAME(E1, E2).

CANDSAME(E1, E2) ∧ CANDSAME(O1, O2) (5.14)
∧ SAME(O1, O2)

∧ REL(E1, O1, R)

∧ REL(E2, O2, S)

∧ RMUT(R, S)

⇒ ¬SAME(E1, E2).

5.3.4 Domain-Specific Knowledge Graph Features

While abstract knowledge graph features provide a generally-applicable tool for knowl-

edge graph entity resolution, in many cases domain experts can rely on experience to

assess the most important features for matching knowledge graphs. Since our model uses

interpretable rules that are easy to generate, domain experts can easily add and remove

73

rules to the model to capture the most relevant relationships. In this section, we provide

some example rules for the task of matching knowledge graphs in the music domain.

These rules are derived from rules used in an industry knowledge graph matching system,

supporting the assertion that rules are a natural and common form of supplying domain

expertise for knowledge graphs.

Rules for Local Features

One example of a domain rule that strongly supports co-reference are relations with cat-

egorical domains. The release type relation in musical domains differentiates be-

tween singles, EPs, and albums. Since the domain of the relation is a small, enumerated

set, matching release types across co-references is important. Rule 5.15 incorporates this

domain knowledge in a rule for release type matching. Just as some relations are more

important than others, so are types, attributes and labels. While general purpose ontolo-

gies have a person type, a more specific type can be far more useful in matching. Rule

5.16 provides a special case for artist, a subtype of person. One way of interpret-

ing this rule is a type-specific prior for entity matches. By choosing appropriate weights,

these rules can also moderate the importance of a similarity metric in a particular domain.

For example, a high similarity value may not be meaningful for a broad domain (e.g.

person) but can provide a stronger disambiguating signal for a more selective domain

(e.g. artist).

CANDSAME(E1, E2) ∧ SIM(E1, E2) (5.15)
∧ REL(E1, L,release type)

∧ REL(E2, L,release type)

⇒ SAME(E1, E2).

74

CANDSAME(E1, E2) ∧ SIM(E1, E2) (5.16)
∧ LBL(E1,artist)

∧ LBL(E2,artist)

⇒ SAME(E1, E2).

Rules for Collective Features

Similarly, domain experts can select the most important relations for resolution in a do-

main. Rule 5.17 which focuses on co-referent releases of the same album can be more

useful than a rule which focuses on release label since a label typically has many

releases. Domain rules can also incorporate more complex criteria. Rule 5.18 has a simi-

lar form to normal collective relational rules, but includes an additional constraint that the

albums and artists must all come from the same genre.

CANDSAME(E1, E2) ∧ SIM(E1, E2) (5.17)
∧ CANDSAME(O1, O2)

∧ REL(E1, O1,release album)

∧ REL(E2, O2,release album)

∧ SAME(E2, E1))

⇒ SAME(O1, O2).

CANDSAME(E1, E2) ∧ CANDSAME(O1, O2) (5.18)
∧ SIM(E1, E2)

∧ SIM(O1, O2)

∧ REL(E1, O1,album artist)

∧ REL(E2, O2,album artist)

∧ REL(E1, G,album genre)

∧ REL(E2, G,album genre)

∧ REL(O1, G,artist genre)

∧ REL(O2, G,artist genre)

∧ SAME(O1, O2)

⇒ SAME(E1, E2).

75

Table 5.2: Summarizing entity resolution rules and matching them to application

Local/ New Extend Multiple
collective extractions KG KGs

(5.2.1) (5.1.1) (5.1.2) (5.1.3)

Negative prior (5.1) L Y Y Y
Positive prior (5.2) L Y Y Y
Similarities (5.3) L Y Y Y
Symmetry (5.4) C Y Y Y
Transitivity (5.5) C Y N Y
Sparsity (5.6) C N N Y
New Entity prior
(5.7)

L N Y Y

New Entity penalty
(5.8)

C N Y Y

Label agreement
(5.9)

L N? Y Y

Label disagreement
(5.10)

L N? Y? Y?

Label exclusion
(5.11)

L Y Y Y

Relational agree-
ment (5.12)

C N? Y Y

Relational disagree-
ment (5.13)

C N? Y? Y?

Relational exclusion
(5.14)

C Y Y Y

Domain-specific
categorical relations
(5.15)

L Y Y Y

Domain-specific
prior (5.16)

L Y Y Y

Domain-specific re-
lations (5.17)

C Y? Y Y

Domain-specific
relational criteria
(5.18)

C Y? Y Y

76

5.3.5 Synthesis

The previous section introduced a number of rules for entity resolution, categorized by

whether the rule used local or collective information and the granularity of the knowledge

graph features used. In the discussion of each rule, we referenced the three knowledge

graph entity resolution scenarios (introduced in sections 5.1.1, 5.1.2, and 5.1.3) and the

conditions under which the rule was applicable to the scenario. The rules and this dis-

cussion is summarized in Table 5.2. Note that some of the entries have question marks,

which reinforce the guidance that the corresponding rules may be appropriate based on

dataset characteristics such as noise and sparsity.

The knowledge graph entity resolution model presented in this section is a general

and versatile approach to entity resolution in richly structured domains. Since the re-

quirements of different entity resolution scenarios vary, care must be taken to select the

appropriate rules and design meaningful domain-specific rules. However the prolifera-

tion of domain-specific entity resolution methods (Durbin et al., 1998; Winkler, 1999)

and anecdotal evidence from many projects in industry suggest that many bespoke entity

resolution systems are already in use. Despite the widespread use of such systems and

substantial research in entity resolution, no general-purpose, collective framework has

been adopted across domains.

This chapter provides a general guide to designing entity resolution systems for

knowledge graphs. The rules presented can be used as templates for many approaches

that jointly model entity resolution decisions, such as linear programs and probabilistic

models. We use the rules as the basis for a probabilistic soft logic (PSL) program for

77

performing entity resolution. PSL is a natural choice for entity resolution models, since

entity resolution models have many collective dependencies, use real-valued similarity

measures, and often include a vast number of entities.

5.4 Evaluation

We evaluate our knowledge graph entity resolution approach on two very different datasets

from different entity resolution scenarios. The first dataset, corresponding to the scenario

in Section 5.1.1, involves clustering unresolved references with associated relations and

attributes from different web sources. The second dataset, corresponding to the scenario

in Section 5.1.3, involves resolving entities between the MusicBrainz music knowledge

graph and the Freebase broad-coverage knowledge graph.

NELL

NELL extracts a series of facts from text, and uses a set of heuristics to map textual

references to entities. This entity mapping process includes two phases: first, textual

references are clustered to identify senses and then these textual references are mapped

to the appropriate senses. The entity mapping process does not use the context of the

knowledge graph, which can improve the performance on entity mapping. Furthermore,

the entity mapping process does not attempt to perform entity resolution between different

textual references that refer to the same underlying entity.

In order to investigate the effectiveness of entity resolution applied to ambiguous

candidate extractions, We worked with the NELL team to collect data from a new NELL

78

instance that performed only the first phase of entity mapping, clustering textual refer-

ences to generate senses. The second phase of entity mapping was not performed, so

this NELL instance produced raw candidate extractions in terms of the original textual

references. The goal in this setting is to collectively determine the facts in the knowledge

graph along with the entity co-references.

NELL’s Entity Resolver produces match scores for pairs of textual references. We

extend these match scores by computing a number of string similarity metrics for each

pair of textual references, using the SecondString library (Cohen et al., 2003). The set of

string similarities includes the Jaccard overlap (of characters), Jaro, Jaro-Winkler, Leven-

shtein, Monge-Elkan, and Smith-Wasserman similarity functions. These string similari-

ties constituted local features for entity resolution.

Using data from the first iteration of NELL yielded 145K candidate relations, 200K

candidate labels, 170K unique textual references that mapped to 190K potential enti-

ties. The NELL EntityResolver candidate generation produced 4K potential entity co-

references. Since the dataset was collected from a new NELL instance, no existing entity

match information was used or available. Furthermore, since there were no pre-existing

entities, each textual reference was considered unknown and no special handling of new

entities was required.

NELL does not have a reliable source of entity resolution data, so we manually

labeled entity co-references. For each method, we chose the top 50 as well as 50 ran-

domly selected entity co-references from each method. This selection process yielded

421 co-references after duplicates were removed. We then removed the truth values and

randomized the order of the co-references for judging.

79

Method AUPRC F1 Prec. Recall

Basic, Local 0.267 0.333 0.214 0.759
Basic & KG, Local 0.247 0.426 0.298 0.747
Basic, All 0.307 0.446 0.333 0.675
Basic & KG, All 0.351 0.453 0.383 0.554

Table 5.3: Comparing the performance of knowledge graph entity resolution rules in
for the NELL dataset. Performance improves by adding knowledge graph features and
collective features, with the best performance with both.

Entities were judged to be co-referent when there was an unambiguous interpreta-

tion of the textual references that corresponded to one entity. This, for example, excludes

“Giants” matching “San Jose Giants” since many other sportsteams share the same name.

Similarly, when a textual reference was the amalgamation of two entities, matches with

either entity were dissolved. For example, this invalidates “Quito” from matching with

“Quito and Cuenca”. However, merged entities were judged co-referent, allowing “Kon-

ica” and “Konica Minolta” to be co-referent since the company Konica merged with Mi-

nolta to become the merged company.

Results for the NELL entity resolution are reported in Table 5.3. The baseline,

Basic-Local entity resolution uses only priors and the various similarity metrics.

MusicBrainz and the Google Knowledge Graph

The second dataset for entity resolution involved mapping entities between two knowl-

edge graphs. The first knowledge graph was from the MusicBrainz music knowledge

base, introduced in the previous chapter. The second knowledge graph was the Google

Knowledge Graph. We restricted the entities from the Google Knowledge Graph in our

dataset to select only those entities that were in the publicly available Freebase knowledge

80

base.

An existing, proprietary pipeline to map entities between these two knowledge

graphs exists. The pipeline uses Boolean rules restricted to discrete features. The sys-

tem is designed to consider entity resolutions sequentially, and as a result cannot use all

collective information between resolution decisions. When a match decision for an entity

cannot be made by the pipeline, the entity is manually resolved by a human annotator.

Evaluation of the existing pipeline showed a high error rate, while manually annotated

entities contained no errors. Our experiments focus on the entities that were not suc-

cessfully matched using the existing pipeline, which constitute the most difficult entity

resolution decisions.

We begin with a dataset of 11K entities added to the MusicBrainz knowledge graph

between 5/5/2014 and 6/29/14 that were manually annotated and have reliable ground

truth. We identify 332K Freebase entities that are potential candidate matches for the Mu-

sicBrainz entities using a string similarity measure that is normalized for entity frequency.

Since these newly added entities are often not found in Freebase, we generate new entity

candidates for each MusicBrainz entity. The entity resolution dataset also includes 1M

known entity mappings between the two knowledge graphs and 15.7M relations between

entities.

Table 5.4 summarizes the results of these experiments. The baseline method uses

only local rules, and achieves an area under the precision-recall curve (AUPRC) of 0.416

and an F1 measure of 0.734. Adding collective rules and domain-specific features that

use the knowledge graph improves performance, with an AUPRC of 0.569 and an F1 of

0.805. Incorporating rules to handle new entities further improves performance with an

81

Method AUPRC F1 F1 (Exist) F1 (New)

Basic & NewEn-
tity, Local

0.416 0.734 0.169 0.744

Basic & Domain,
All; NewEntity,
Local

0.569 0.805 0.305 0.831

Basic & Domain
& NewEntity, All

0.724 0.840 0.070 0.895

Table 5.4: Comparing the performance of knowledge graph entity resolution rules when
merging MusicBrainz entities into the Knowledge Graph. Due to a skew toward new
entities, the collective new entity rules dramatically improve overall performance, but
with a substantial drop in the F1 measure for existing entities

AUPRC of 0.724 and an F1 measure of 0.840.

To better understand the performance, we separate the F1 measure for existing enti-

ties and new entities. In the dataset we collected, the entity mappings are skewed toward

new entities, so that approximately 75% of entities in the MusicBrainz knowledge graph

are not found in the Freebase entities. Thus the New Entity rules can have a dramatic

influence on the performance by improving the performance on new entities while having

a marked decrease in performance in existing entities.

5.5 Discussion

The growing importance of knowledge graphs has resulted in an increased emphasis on

entity resolution for such structured domains. The collective relationships in a knowledge

graph provide the key to improving the performance of entity resolution. In this chap-

ter, we provided an inventory of important features necessary for entity resolution in the

context of knowledge graphs and identified the corresponding knowledge graph settings

82

where these features are important. Building entity resolution models, particularly collec-

tive models, has required a great deal of time and effort. The general nature of this model

makes it applicable to many different problem settings, and a PSL implementation of our

entity resolution model makes it accessible for rapid prototyping and experimentation for

a variety of entity resolution problems.

83

Chapter 6: Scaling Knowledge Graph Identification

One of the longstanding scalability challenges in artificial intelligence is tackling the com-

binatorial explosion, requiring optimization over an exponentially large space. Knowl-

edge graph identification falls squarely into this space: a Boolean assignment of truth

values to facts that satisfies a collection of constraints posed as logical formulas is an in-

stance of the NP-complete maximum satisfiability (MAX-SAT) problem (Tsang, 1995).

In this chapter, we analyze the theoretical complexity and empirical scaling performance

of knowledge graph identification, and then develop a method to partition and distribute

knowledge graph identification across machines.

6.1 Scalability Analysis of Knowledge Graph Identification

Two major forces contribute to the scalability challenges of knowledge graph identifica-

tion: the state space of the optimization variables and the number of optimization terms.

The state space of knowledge graph identification is the set of joint assignments to all

facts in the knowledge graph. For a discrete model of a knowledge graph with F facts,

the state space is 2F , corresponding to a true or false assignment for each fact. In a contin-

uous model, the state space isO(RF), corresponding to an assignment in the [0, 1] interval

for each fact.

84

The second factor affecting scalability in knowledge graph construction is the num-

ber of optimization terms. Collective knowledge graph models incorporate constraints

or rules relating the facts in the knowledge graph, and each of these ground constraints

or rules is converted into an optimization term. The number of groundings of a rule is

proportional to the number of atoms in the rule. Given a rule with p atoms, the number of

ground rules is O(F p) yielding polynomial growth as the number of facts increase.

Even using simple, pairwise constraints (p = 2) such as domain, range, mutual

exclusion, and subsumption can lead to a large blowup in the number of constraints. For

more sophisticated knowledge graph models with rules relating many facts, the value of

p can be much higher and produce a greater scalability challenge. While the worst case

scaling is polynomial, in practice the growth in the number of groundings depends on the

distribution of facts. A key consideration in determining how many optimization terms

are required is the sparsity of the rules and constraints. For example, mutual exclusion

constraints create a dense subgraph between all of the labels for a given entity.

These scalability considerations of the knowledge graph identification problem pose

difficulties to many approaches inferring a knowledge graph. Search-based approaches

have to contend with a vast state space. Developing usable search heuristics to explore

this state space using the collection of rules and constraints in a knowledge graph may

be difficult, due to the large number of ground terms. Optimization techniques that rely

on sampling, such as Markov chain Monte Carlo, can be hampered by the large number

of terms as well, since updates to the variable assignments depend on the ground rules

and require recomputing the objective repeatedly. Additionally, the large state space can

result in many local optima and make convergence difficult.

85

6.2 Scaling Knowledge Graph Identification with HL-MRFs

Our implementation of knowledge graph identification circumvents these issues through

its choice of model and optimization. PSL defines a class of models known as hinge-loss

Markov random fields (HL-MRFs). A key strength of HL-MRFs is that the inference

objective is convex, allowing exact optimization, albeit in the approximate, soft-truth do-

main. The convexity of inference allows KGI to employ the many different approaches

and algorithms to convex optimization developed over the last decades(Boyd and Van-

denberghe, 2004).

The experiments in Section 4.4 show how the PSL implementation of KGI can

handle problems from real-world datasets like NELL, which include millions of candidate

facts. Inference when an explicit query set of 70K facts is given (PSL-KGI) requires a

mere 10 seconds. The MLN method we compare against takes a few minutes to an hour

to run for the same setting. When inferring a complete knowledge graph without known

query targets, as in the LinkedBrainz and complete NELL experiments, inference with

MLNs is infeasible. In contrast, knowledge graph identification on the NELL dataset can

produce the complete knowledge graph containing 4.9M facts in only 130 minutes. The

ability to produce complete knowledge graphs in these realistic settings is an important

feature of our implementation of knowledge graph identification.

To better understand the scalability of KGI, we performed an extensive set of exper-

iments by partitioning the NELL extractions while preserving groundings. We generated

over 1000 knowledge graph identification problems and recorded the inference time for

each of these problems (which includes costs related to grounding out the model). Fig.

86

6.1 shows this inference time scales with the size of the KGI problem, which is expressed

in terms of the number of ground rules and constraints. Every data point on the scatterplot

represents a single run of KGI inference. Although there are outliers, the vast majority of

these KGI instances appear to scale linearly with the number of optimization terms.

Figure 6.1: A plot capturing the running time and problem size (in terms of optimza-
tion terms) of over 1000 KGI executions. Each execution is represented as a point in the
scatter plot. Trendlines for a linear fit and quadratic fit of the relationship between prob-
lem size and running time are shown. Scalability of KGI appears to grow linearly with
optimization terms.

6.3 Scalability Challenges for Knowledge Graph Identification

Our current approach for knowledge graph identification easily scales to millions of

extractions. Unfortunately, even though knowledge graph identification models imple-

mented as hinge-loss Markov random fields show impressive scaling performance as the

87

number of optimization terms grows, the analysis in Section 6.1 suggests that the number

of terms may grow polynomially with the number of extractions. The combination of

more powerful extraction techniques and the vast information available on the Internet

means that knowledge graph construction systems are encountering an ever-increasing

amount of data. These trends suggest that the true scale of KGI is billions of extractions

or more, and even quadratic scaling of knowledge graph identification can prove to be

too restrictive for practical applications. We address this challenge by developing a paral-

lel approach to knowledge graph identification which distributes the probabilistic model

across many different machines.

6.3.1 Partitioning Knowledge Graphs for Distributed Processing

The key to distributing knowledge graph identification is partitioning the knowledge

graph across multiple machines. Horizontal partitioning, or splitting data into multiple

sets which are processed independently, is non-trivial for joint inference problems such

as KGI. Many appealing strategies for partitioning extractions involve partitioning the

extractions directly. A simple approach could simply partition the extractions randomly.

Unfortunately, such a simple approach will lose relationships between facts, creating sub-

problems that may turn out to be equivalent to the independent models presented in Chap-

ter 4.

More sophisticated approaches could operate on the entities in the knowledge graph,

for example by generating the extraction graph from a set of noisy extractions. Using this

extraction graph, one could cluster the graph into separate components using a graph

88

clustering technique. One popular technique for clustering a graph into components is the

minimum graph cut (Ford and Fulkerson, 1956). The problem of generating a minimum

cut corresponds to removing a small number of edges from the original graph in order to

generate one or more disconnected components of the graph. Since these components do

not share any vertices, each can be processed independently.

Clustering the extraction graph offers some benefits. First, the approach is rela-

tively straightforward to implement since many methods exist for graph clustering and

finding minimum cuts in graphs (Karger and Stein, 1996). Second, the clustering cap-

tures the relational information that relates entities, which would result in a partitioning

grouping semantically similar clusters of entities. However, a number of issues make such

approaches intractable. First, such a partitioning requires partitioning a graph with many

edges (possibly billions or trillions), which presents a substantial scalability challenge.

Second, partitioning extractions directly does not preserve the ontological relationships

that form a key ingredient for generating a consistent knowledge base. We present an

alternative method, based on partitioning the concept graph, that addresses both of these

drawbacks.

6.3.2 Scalability via Ontological Partitioning

We confront the problem of partitioning knowledge graph identification by identifying a

key insight: since the concept graph contains the ontological relationships relating extrac-

tions in our model, and these relationships are the basis for knowledge graph identifica-

tion, we can partition the concept graph and, by so doing, partition the probabilistic model

89

countrycities

country

countrycapital

city

citycapitalofcountry

citylocatedincountry

Figure 6.2: A small section of the NELL concept graph that shows the relationship be-
tween the labels city and country with relations such as capital.

generated by KGI. The concept graph, which was introduced in Section 3.1, has labels

and relations from the knowledge graph as vertices and the edges connecting these ver-

tices are the ontological constraints between these labels and relations. These ontological

constraints were incorporated into the knowledge graph identification model presented in

Section 4.2.

Our approach partitions the concept graph, which entails creating a partition

of the labels and relations in the ontology. For example, the ontological relation

DOM(cityCapitalOfCountry, country) would be converted to an edge of

type DOM between the relation vertex cityCapitalOfCountry and the label ver-

tex country. We show a small subset of the ontological graph for NELL in Figure 6.2.

A partitioning of the concept graph might separate the city and country labels and

related relations into distinct partitions, while assigning relations that include both city

and country (such as cityCapitalOfCountry) to only one of these partitions. We

refer to this partitioning of the concept graph as an ontological partitioning.

Given an ontological partitioning of the labels and relations, generating a partition-

90

ing of the extractions is straightforward. Each ontological partition specifies a cluster of

related labels and relations. Using these clusters of relations and labels, we can create

a corresponding partition of the extractions of specific instances of these relations and

labels, where all extractions pertaining to the relations and labels in the cluster will be as-

signed to the same partition. Since each label and relation is assigned to a unique cluster

and each extraction pertains to a single label or relations, each extraction will be assigned

to exactly one partition.

The advantages of ontological partitioning directly address the weaknesses of par-

titioning the extraction graph directly. Partitions are based on ontological relationships

between these relations and labels instead of relationships between entities. Ontologi-

cal partitioning tries to maximize the number of ontological relationships preserved in

the data, rather than the number of entity-based relationships. Beyond capturing impor-

tant model properties in the partitioning, ontological partitioning also has a scalability

advantage. The ontology is many orders of magnitude smaller than the extractions, and

the size of the ontology can remain relatively constant while the number of extractions

grows by many orders of magnitude. Despite these advantages, there are some critical

shortcomings of this approach, which we discuss and address in the next sections.

6.3.2.1 Handling Unevenly Distributed Extractions

One issue that may arise from partitioning the concept graph is that the induced partition-

ing of extractions may be imbalanced. Imbalanced partitions may occur because some

relations and labels occur more frequently in the data than others. For example, the ex-

91

tractor may have far more extractions about the label city than the label bird, resulting

in more extractions in the partition induced by the cluster containing the label city.

Unbalanced partitions pose a problem when inference when using horizontal parti-

tioning. Since inference is run in parallel across machines, the inference time is equal to

the time taken by the slowest partition. Since inference time depends on the size of the

partition, having a single large partition can result in a long inference time, even if most

partitions finish quickly. By balancing partitions, we can produce the quickest overall

inference.

Balancing partitions of the extraction graph directly can be accomplished by adding

a constraint that all partitions contain an equal number of entities. However, applying this

technique to the concept graph is problematic since, as discussed, each relation or label

corresponds to a varying number of extractions. To address the problem of imbalanced

partitions, we incorporate information about the data distribution into the concept graph.

Instead of treating labels and relations as atomic elements of a partitioning, we as-

sign an importance to each label and relation based on the data distribution. The simplest

way to do this is to assign each of the vertices corresponding to a label or relation a weight

equal to the frequency of the label or relation in the data. When clustering the graph, we

add an additional constraint that each cluster contain vertices with an equal weight. By

adding such a constraint, we ensure that each cluster of the concept graph maps to an

equal number of extractions. Thus, when inducing a partitioning over extractions, each

partition will contain a roughly equal number of extractions.

92

6.3.2.2 Dealing with Unbalanced Ontologies

By creating balanced partitions, our approach ensures fast inference. However, an equally

important goal is ensuring that inference quality remains high. One possible concern

that may impact inference quality is the distribution of ontological information. Simply

partitioning the ontology graph when the ontological information is imbalanced may lead

to poor inference quality.

For example, in NELL’s ontology there are nearly 50K RMUT constraints

and only 418 DOM constraints. Many of the mutually-exclusive relations are not

present in the extractions for the same pair of entities, while domain constraints

are relevant for every extracted relation. For example, the ontological relationship

RMUT(cityCapitalOfCountry,currencyCountry) which states that the re-

lation specifying that a city is a capital of a country and the relation specifying the

currency a country uses are mutually exclusive, may not be applied frequently if

the extractors do not commonly confuse cities and currencies. However the onto-

logical DOM(cityCapitalOfCountry, country) may be useful whenever the

cityCapitalOfCountryrelationship is observed.

To capture the variable utility of different ontological information, we assign a

weight to each type of ontological relationships. While many different approaches can

be used to select these weights, we introduce a fairly straightforward heuristic based on

rarity. Specifically, we consider ontological relationships that occur rarely as more im-

portant, and assign a higher penalty to clusterings that exclude such relationships. In the

perspective of a minimum cut, we can interpret this heuristic as assigning a weight to each

93

edge of a given type of ontological relationship.

Our approach determines weights by choosing a weight that is inversely propor-

tional to the number of ontological constraints of that type. Using the statistics from the

NELL ontology from the previous paragraph, this means that the RMUT ontological rela-

tionship would have a weight of 1
50K

while the DOM ontological relationship would have

a weight of 1
418

. Note that the aggregate weight of each type of ontological relationships is

equal to one across the concept graph (e.g. there are 418 DOM edges, each with a weight

of 1
418

). This, in some sense, can be seen as equalizing the importance across all types of

ontological relationships in the concept graph.

6.4 Evaluation

While the choice of partitioning technique can influence running time, the number of par-

titions used in inference can also impact the computational performance of KGI. Joint

inference without partitioning preserves all dependencies between extractions, but has a

correspondingly complex model and cannot benefit from parallelism. Using a large num-

ber of partitions increases parallelism and improves the speed of inference, but necessarily

involves losing dependencies which may reduce the quality of the inference results. We

explore the speed-quality tradeoff between the number of partitions and the quality of the

inference results.

94

6.4.1 Comparison of Partitioning Techniques

We evaluate different partitioning strategies for our KGI model with data from iteration

165 of the NELL system, which contains nearly 80K ontological relationships, 1.7M

candidate facts, and 440K previously promoted facts which we represent as a separate,

noisy source. While PSL supports weight learning, our experiments use a simpler setting

where all source weights are set to be equal (∀T : wCL−T = wCR−T = 1) , while entity

resolution rules and ontology rules are given higher weights (wER = wEL = 10;wO =

100). We assess the quality of our inference results using a manually-labeled evaluation

set with 4.5K extractions (Jiang et al., 2012) and measuring the running time on a 16-core

Xeon X5550 CPU at 2.67GHz with 78GB of RAM. We provide documentation, code

and datasets to replicate our results on GitHub.1 To partition the ontology, we use the

METIS graph partitioning package(Karypis and Kumar, 1998). In all cases, the time for

partitioning the ontology graph was less than a minute. Our experiments consider two

aspects of partitioning extractions for KGI: the partitioning technique and the number of

partitions.

We compare four techniques for partitioning knowledge graphs with inference on

the full set of extractions. The first, a baseline, randomly assigns each extraction

to a partition. While such an approach balances partitions, it does not actively try to

maintain the dependencies between extractions that KGI uses. The second approach

Onto-EqEdg-NoVtx formulates an ontology graph where each edge (corresponding

to an ontological constraint) has equal weight. The ontology graph is partitioned using a

1https://github.com/linqs/KnowledgeGraphIdentification

95

https://github.com/linqs/KnowledgeGraphIdentification

Table 6.1: Comparing different partitioning techniques, we find that partitioning extrac-
tions with an ontology-based approach that weights vertices with the frequency of re-
spective labels and relations in the data preserves model quality and reduces inference
speed

Technique AUC Opt. Terms Time (min.)

NELL (no KGI) 0.765 - -
baseline 0.780 3.0M 31
Onto-EqEdg-NoVtx 0.788 4.2M 42
Onto-EqEdg-WtVtx 0.791 3.7M 31
Onto-WtEdg-WtVtx 0.790 3.7M 31
No-Partitioning 0.794 10.9M 97

p-way balanced min-cut, where the objective function minimizes the communication cost

defined by the sum of adjacent edge weights. The third approach, Onto-EqEdg-WtVtx

equally weights each edge but assigns weights to each vertex (relation or label) based

on the frequency of that relation or label in the extraction data. The ontology graph is

partitioned using a minimum edge cut with a constraint that each cluster has the same ag-

gregate vertex weight. The fourth approach, Onto-WtEdg-WtVtx weights vertices by

frequency, and also assigns a weight to each edge. The edge weights are set to be inversely

proportional to the frequency of the respective type of ontological information. This for-

mulation was chosen to give each type of ontological information an equal representation

in the ontology graph.

For each partitioning algorithm, we generate 6 disjoint clusters of labels and rela-

tions. We use these 6 clusters of labels and relations to produce 6 corresponding partitions

from the extraction data, where each partition is limited to the relations and labels in the

corresponding cluster. For each of the 6 partitions generated we perform inference on

each partition independently and combine the results of this distributed inference, aver-

96

aging truth values when the same fact appears in the output of multiple partitions. We

compute the area under the precision-recall curve (AUC) for each technique, and report

the running time of the slowest partition.

As shown in Table 6.1, inference over the full knowledge graph

No-Partitioning takes 97 minutes and provides an improvement over NELL’s

default strategy for promoting candidates. The baseline strategy of randomly parti-

tioning extractions dramatically reduces inference time, but produces a considerable drop

in the AUC. The partitioning also fails to preserve many of the ontological relationships,

with the largest partition containing only 3M ground terms. By using an ontology-aware

partitioning method Onto-EqEdg-NoVtx, we improve the AUC over the baseline,

achieving parity with the full joint inference problem, but the running time increases

significantly relative to the baseline. This increase in running time can be partially

explained by the increased number of optimization terms, with 4.2M terms in the largest

partition. Using vertex weights that reflect the data distribution, Onto-EqEdg-WtVtx

reduces the inference time by improving the partition balance (3.7M terms in the

largest partition) while also improving AUC. However including weights based on the

ontological frequency, Onto-WtEdg-WtVtx, does not improve our results.

6.4.2 Assessing the Impact of Partition Size

Next, we examine how the number of partitions impact the speed and quality of knowl-

edge graph identification. We used the best-performing partitioning technique from the

earlier experiments, Onto-EqEdg-WtVtx, to create a varying number of partitions. We

97

Table 6.2: Increasing the number of partitions used in inference can dramatically reduce
the time for inference with relatively modest loss in quality, as measured by AUC

Partitions AUC Time (min.)

48 0.788 12
24 0.790 20
12 0.791 26
6 0.791 31
3 0.794 44
2 0.794 57
1 0.794 97

generated 1, 2, 3, 6, 12, 24 and 48 partitions of the extractions using this technique. We

report the results for each of these partition numbers in Table 6.2. Our results show that

partitioning can dramatically reduce inference time from 97 minutes with a single parti-

tion to 12 minutes with 48 partitions. Surprisingly, there is little degradation in inference

quality as measured by AUC, which ranges from .794 with a single partition to .788 with

48 partitions. The quality for 48 partitions even remains higher than the baseline strategy

from the previous section, which had an AUC of .780 when randomly partitioning the

data into 6 partitions. Fig. 6.3 clearly shows this trade-off between inference speed and

quality for the NELL dataset. The sublinear speedup, which diverges from the earlier

results showing linear scaling with extraction size, is potentially related to caching effects

or computational overhead in the implementation of our model.

98

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	

20	

40	

60	

80	

100	

1	 2	 3	 6	 12	 24	 48	

AU
C	

Ti
m
e	
(m

in
.)	

Par00ons	

AUC	 and	 Inference	 Time	 vs.	 Number	 of	 Par00ons	

Time	

AUC	

Figure 6.3: A plot showing the scaling performance of distributed KGI as a function of the
number of partitions. The left axis shows the running time of the slowest partition while
the right axis shows the AUPRC of the inference output. As the number of partitions
increases, the inference running time decreases but the AUC fairly stable. These results
indicate that partitioning KGI can improve scalability without sacrificing quality.

6.5 Discussion

In this chapter, we present a deeper examination into one of the central problems in knowl-

edge graph construction: scalability. Our contributions are: (1) a formal analysis of the

complexity of knowledge graph identification, signaling the difficulty of alternative im-

plementations KGI; (2) a demonstration of the scalability of our KGI implementation,

in experimental evaluation of several real-world knowledge graph construction tasks and

through an empirical analysis of over 1000 KGI problems; (3) further improving the scal-

ability of KGI by using a distributed approach which partitions extractions while taking

into account the data distribute and preserving key ontological relationships, including

99

weighting these relationships by their relative frequency; and (4) performing an empiri-

cal analysis comparing different distributed approaches to KGI and exploring the tradeoff

between speed and quality based on the number and size of partitions. As the results of

this investigation demonstrate, despite tackling a theoretically intractable problem, KGI

can be scaled to yield an order-of-magnitude decrease in inference time with little loss of

quality. This scalability is a necessity for commercial settings where large problems can

easily be distributed over hundreds or thousands of machines.

100

Chapter 7: Online Collective Inference

A key challenge of many artificial intelligence problems is that the evidence grows and

changes over time, requiring updates to inferences. Every time a user rates a new movie

on Netflix, posts a status update on Twitter, or adds a connection on LinkedIn, inferences

about preferences, events, or relationships must be updated. When constructing a knowl-

edge base, each newly acquired document prompts the system to update inferences over

related facts and resolve mentions to their canonical entities. Problems such as these ben-

efit from collective (i.e., joint) reasoning, but incorporating new evidence into a collective

model is particularly challenging. New evidence can affect multiple predictions, so up-

dating inference typically involves recomputing all predictions in an expensive global op-

timization. Even when a full inference update is tractable—which, using the best known

methods, can be linear in the number of factors—it may still be impractical. For example,

updating a knowledge graph with millions of facts can take hours, thereby requiring some

compromise, either in the form of a deferment strategy or approximate update. In this

chapter, we consider the task of efficiently updating the maximum-a-posteriori (MAP)

state of a probabilistic graphical model, conditioned on evolving evidence. We refer to

this problem as online collective inference.

In online collective inference, a single graphical model, describing the conditional

101

distribution of a set of random variables with fixed dependency structure, is given. Over a

series of epochs, the true assignments (i.e., labels) of certain variables are revealed, intro-

ducing new evidence with which can be used to update the assignments to the remaining

unknowns. We constrain the problem by adding a budget, such that only a fixed percent-

age of variables can be updated in each epoch. The introduction of a budget necessitates

some approximation to full inference. This constraint distinguishes our work from the

vast body of literature on belief revision (e.g., Gardenfors, 1992), Bayesian network up-

dates (e.g., Buntine, 1991; Friedman and Goldszmidt, 1997; Li et al., 2006), models for

dynamic (Murphy, 2002) or sequential (Fine et al., 1998) data, and adaptive inference

(e.g., Acar et al., 2008), which deal with exact updates to inference. We analyze bud-

geted online collective inference from both the theoretical and algorithmic perspectives,

addressing two fundamental questions: How do we choose which variables to update?

How “close” is the approximate inference update to the full inference update?

To formalize the latter question, we introduce the concept of inference regret. Infor-

mally, inference regret measures the amount of change induced by fixing (i.e., condition-

ing on) certain variables in the inference optimization. We specifically analyze the infer-

ence regret of continuous graphical models whose inference objective is strongly convex.

One instantiation of this class of models is hinge-loss Markov random fields (Bach et al.,

2015), which have been used throughout this dissertation, and have been broadly applied

and demonstrate state-of-the-art performance in many applications. Using the duality be-

tween strong convexity and stability, we upper-bound the inference regret. Our bound

is proportional to the distance from the fixed variables to the optimal values of the full

inference problem, scaled by a function of several model-specific properties. We use the

102

inference regret bound to quantify the effect of approximate inference updates in response

to new evidence (in this case, revealed labels). The bound highlights two terms affecting

the regret: the accuracy of the original predictions and the amount that the original pre-

dictions change. This latter insight informs the design of approximate update methods

with a simple intuition: fix the predictions that are unlikely to change in a full inference

update.

To efficiently determine which variables are least likely to change, we turn to the

optimization algorithm used during inference. The alternating direction method of multi-

pliers (ADMM) (Boyd et al., 2011) is a popular convex optimization technique that offers

convergence guarantees while remaining highly scalable. We analyze the optimization

process and catalog the features that allow us to determine which variables will change

the most. Using these features to generate a score for each variable, we establish a ranking

capturing the priority of including the variables in subsequent inference. Since the vari-

able scores are produced using the state of the optimization algorithm, our method does

not incur computational overhead. By ranking variables, we approximate full inference

with an arbitrary budget and support an anytime online inference algorithm.

7.1 Preliminaries

The theory and methods introduced in this chapter apply to any continuous-valued MRF

with a strongly convex MAP inference objective function. One case of particular in-

terest is hinge-loss Markov random fields (HL-MRFs). An HL-MRF is a continuous-

valued Markov network in which the potentials are hinge functions of the variables. Our

103

choice of HL-MRFs comes from technical considerations: we reason about the strength

of convexity of the inference objective, and maximum a posteriori (MAP) inference in

HL-MRFs can be strongly convex.

To better understand HL-MRFs and PSL, consider a model for collective classifica-

tion of network data, in which the goal is to assign labels to nodes, conditioned on some

local evidence and network structure. Let G , (V , E) denote an undirected graph on

n , |V| nodes. Each node i ∈ V is associated with a set of local observations, Xi, and

an unknown label, Li. (In some settings, a subset of the labels are revealed.) In general,

the observations and labels can be real-valued; but for simplicity of exposition, let us as-

sume that each observation is binary-valued, and each label is categorical. The following

logical rules define a PSL program for a typical collective classification model:

wx,` : FEATURE(N, x)⇒ LABEL(N, `)

we,` : EDGE(N1, N2) ∧ LABEL(N1, `)⇒ LABEL(N2, `)

Variables N , N1 and N2 denote nodes; x indexes a local feature; and ` denotes a label.

The rules are weighted by wx,` and we,` respectively. Given G and X , (X1, . . . , Xn)

(and possibly some subset of the labels), the rules are grounded out for all possible

instantiations of the predicates. The groundings involving unknown variables—in this

case, groundings of the LABEL predicate—are represented by [0, 1]-valued variables,

Y , (Yi,`)i,`. Using a relaxation of the MAX-SAT problem to continuous domains

(Globerson and Jaakkola, 2007), each grounding is converted to a convex hinge function

104

of the form

f(X,Y) = (max{0, ϕ(X,Y)})q ,

where ϕ is a linear function of (X,Y), and q ∈ {1, 2} is an exponent that is set a priori

for the given rule. Each hinge function becomes a potential in an HL-MRF.

The resulting HL-MRF enables probabilistic inference over the set of PSL rules.

Fix a set of r PSL rules, with corresponding weights w , (w1, . . . , wr). For the ith

rule, let G(i) denote its set of groundings in G, and let f i
j denote the j th grounding of its

associated hinge function. To compactly express the weighted sum of grounded rules, we

let

f(X,Y) ,

 |G(1)|∑
j=1

f 1
j (X,Y) , . . . ,

|G(r)|∑
j=1

f r
j (X,Y)

>

denote the aggregate of the grounded hinge functions. We can thus write the weighted sum

of groundings as w · f(X,Y). This inner product defines a distribution over (Y |X) with

probability density function p (Y = y |X = x; w) ∝ exp (−w · f(X,Y)). The maxi-

mizer of the density function (alternately, the minimizer of −w · f(X,Y)) is the MAP

state. The values of Y in the MAP state can be interpreted as confidences. Addition-

ally, we can define a prior distribution over each Y. In this case, we will use an L2, or

Gaussian, prior. This can be accomplished using the rule wp,` : ¬ LABEL(N, `), with a

squared hinge (i.e., q = 2). Let us assume, without loss of generality, that each prior rule

has weight wp,` = wp/2, for some wp > 0. Thus, the corresponding hinge function for

grounding LABEL(i, `) is simply (Yi,`)
2; the aggregate features for the prior are ‖Y‖2

2. So

105

as to simplify notation, let ẇ , (w, wp) and define an energy function,

E(y |x; ẇ) , w · f(x,y) +
wp

2
‖y‖2

2 . (7.1)

The resulting probability density function is

p (Y = y |X = x; ẇ) ∝ exp (−E(y |x; ẇ)) .

MAP inference, henceforth denoted h(x; ẇ), is given by

h(x; ẇ) = arg min
y

E(y |x; ẇ).

7.2 Inference Regret

The notion of regret has often been used to measure the loss incurred by an online learning

algorithm relative to the optimal hypothesis. We extend this concept to online inference.

Fix a model. Suppose we are given evidence, X = x, from which we make a prediction,

Y = y, using MAP inference. Then, some subset of the unknowns are revealed. Condi-

tioning on the new evidence, we have two choices: we can recompute the MAP state of

the remaining variables, using full inference; or, we can fix some of the previous predic-

tions, and only update a certain subset of the variables. To understand the consequences

of fixing our previous predictions we must answer a basic question: how much have the

old predictions changed?

We formalize the above question in the following concept.

106

Definition 1. Fix a budget m ≥ 1. For some subset S ⊂ {1, . . . , n}, such that its

complement S , {1, . . . , n} \ S, has size
∣∣S∣∣ = m, let YS denote the corresponding

subset of the variables, and let YS denote its complement. Assume there is an operator

Γ that concatenates YS and YS in the correct order. Fix a model, ẇ, and an observation,

X = x. Further, fix an assignment, YS = yS , and let

h(x,yS ; ẇ) , Γ

(
yS , arg min

yS

E (Γ(yS ,yS) |x; ẇ)

)

denote the new MAP configuration for YS after fixing YS to yS . We define the inference

regret for (x,yS ; ẇ) as

Rn(x,yS ; ẇ) ,
1

n
‖h(x; ẇ)− h(x,yS ; ẇ)‖1 . (7.2)

In general, the inference regret can be as high as 1 for variables in [0,1]. For ex-

ample, consider network classification model in which probability mass is only assigned

to configurations where all nodes have the same label. Fixing a variable corresponding

to a single node label in this setting is tantamount to fixing the label for all nodes. In

the presence of strong evidence for a different label, incorrectly fixing a single variable

results in incorrectly inferring all variables.

In online inference, regret can come from two sources. First, there is the regret

of not updating the MAP state given new evidence (in this case, revealed labels). If

this regret is low, it may not be worthwhile to update inference, which can be useful in

situations where updating inference is expensive (such as updating predicted attributes

107

for all users in a social network). The second type of regret is from using an approximate

inference update in which only certain variables are updated, while the rest are kept fixed

to their previous values. We describe several such approximations in Section 7.3. In

practice, one may have both types of regret, caused by approximate updates in response

to new evidence. Note that the inference regret obeys the triangle inequality, so one can

upper-bound the compound regret of multiple updates using the regret of each update.

7.2.1 Regret Bounds for Strongly Convex Inference

A convenient property of the L2 prior is that it is strongly convex, by which we mean the

following.

Definition 2. Let Ω ⊆ Rn denote a convex set. A differentiable function, f : Ω → R, is

κ-strongly convex (w.r.t. the 2-norm) if, for all ω,ω′ ∈ Ω,

κ

2
‖ω − ω′‖2

2 + 〈∇f(ω),ω′ − ω〉 ≤ f(ω′)− f(ω). (7.3)

Strong convexity has a well-known duality with stability (Wainwright, 2006), which we

will use in our theoretical analysis.

The function f(ω) , 1
2
‖ω‖2

2 is 1-strongly convex. Therefore, the prior, wp

2
‖y‖2

2,

is at least wp-strongly convex. We also have that the aggregated hinge functions, f(x,y),

are convex functions of Y. Thus, it is easily verified that the energy, E(y |x; ẇ), is at

least a wp-strongly convex function of y. This yields the following upper bound on the

inference regret.

108

Proposition 1. Fix a model with weights ẇ. Assume there exists a constant B ∈ [0,∞)

such that, for any x, and any y,y′ that differ at coordinate i,

‖f(x,y)− f(x,y′)‖2 ≤ B |yi − y′i| . (7.4)

Then, for any observations x, any budget m ≥ 1, any subset S ⊂ {1, . . . , n} :
∣∣S∣∣ = m,

and any assignments yS , with ŷ , h(x; ẇ), we have that

Rn(x,yS ; ẇ) ≤

√
1

n

(
3

2
+
B ‖w‖2

wp

)
‖yS − ŷS‖1.

Proof

Let ŷ , h(x; ẇ) denote the original MAP configuration, i.e., the minimizer ofE(· |x; w).

Let ŷ′ , h(x,yS ; ẇ) denote the updated MAP state after conditioning, and note that ŷ′S

is the minimizer of E (Γ(yS , ·) |x; ẇ).

Since ŷS may be different from yS , we have that ŷ may not be in the domain of

E (Γ(yS , ·) |x; ẇ).

We therefore define a vector ỹ ∈ [0, 1]n that is in the domain, and has minimal Hamming

distance to ŷ. Let ỹi , yi for all i ∈ S, and ỹj , ŷj for all j /∈ S.

109

We begin by restating the two-norm in terms of ỹ,

∥∥ŷ′ − ŷ
∥∥2

2

=
∥∥ŷ′ − ỹ + ỹ − ŷ

∥∥2

2
.

=
∥∥ŷ′ − ỹ

∥∥2

2
+ ‖ỹ − ŷ‖2

2 + 2(ŷ′ − ỹ)(ỹ − ŷ)

However, by the construction of ỹ, each element of the vector equals either ŷ′ or ŷ so the

final dot product will yield 0. This gives us

∥∥ŷ′ − ŷ
∥∥2

2
=
∥∥ŷ′ − ỹ

∥∥2

2
+ ‖ỹ − ŷ‖2

2 . (7.5)

Further, since the domain of each Yi is [0, 1], the L1 distance dominates the L2 distance.

‖ỹ − ŷ‖2
2 = ‖yS − ŷS‖

2
2 ≤ ‖yS − ŷS‖1 . (7.6)

Therefore, combining Equations 7.5 and 7.6,

∥∥ŷ − ŷ′
∥∥2

2

=
1

2

(∥∥ŷ − ŷ′
∥∥2

2
+
∥∥ŷ′ − ŷ

∥∥2

2

)
≤ 1

2

(∥∥ŷ − ŷ′
∥∥2

2
+
∥∥ŷ′ − ỹ

∥∥2

2
+ ‖yS − ŷS‖1

)
. (7.7)

For any κ-strongly convex function, ϕ : Ω → R, where ω̂ = arg minω∈Ω ϕ(ω) is

110

the minimizer, then ∀ω′ ∈ Ω,

1

2
‖ω̂ − ω′‖2

2 ≤
1

κ
(ϕ(ω′)− ϕ(ω̂)) . (7.8)

Applying this identify to the first two terms in Equation 7.7, since E(· |x; ẇ) is wp-

strongly convex, we have that

1

2

∥∥ŷ − ŷ′
∥∥2

2
+

1

2

∥∥ŷ′ − ỹ
∥∥2

2

≤ 1

wp

(
E(ŷ′ |x; ẇ)− E(ŷ |x; ẇ)

)
+

1

wp

(
E(ỹ |x; ẇ)− E(ŷ′ |x; ẇ)

)
≤ 1

wp

(E(ỹ |x; ẇ)− E(ŷ |x; ẇ)) . (7.9)

The E(ŷ′ |x; ẇ) terms cancel out. Expanding E(· |x; ẇ),

E(ỹ |x; ẇ)− E(ŷ |x; ẇ)

= w · (f(x, ỹ)− f(x, ŷ)) +
wp

2

(
‖ỹ‖2

2 − ‖ŷ‖
2
2

)
≤ ‖w‖2 ‖f(x, ỹ)− f(x, ŷ)‖2 +

wp

2

(
‖ỹ‖2

2 − ‖ŷ‖
2
2

)
≤ ‖w‖2 ‖f(x, ỹ)− f(x, ŷ)‖2 + wp ‖yS − ŷS‖1 . (7.10)

The first inequality uses Cauchy-Schwarz and the final step uses

‖ỹ‖2
2 − ‖ŷ‖

2
2 ≤ 2 ‖yS − ŷS‖1 .

111

Finally, we construct a series of vectors, indexed by each i ∈ S, that transform ŷ

into ỹ, one coordinate at a time. For the following, let S(j) denote the j th element in S.

First, let ỹ(0) , ŷ; then, for j = 1, . . . ,m, let ỹ(j) be equal to ỹ(j−1) with index S(j)

replaced with value ỹS(j). Note that ỹ(m) = ỹ. Using the triangle inequality, one can

show that

‖f(x, ỹ)− f(x, ŷ)‖2 =
∥∥f(x, ỹ(m))− f(x, ỹ(0))

∥∥
2

=

∥∥∥∥∥
m∑
j=1

f(x, ỹ(j))− f(x, ỹ(j−1))

∥∥∥∥∥
2

≤
m∑
j=1

∥∥f(x, ỹ(j))− f(x, ỹ(j−1))
∥∥

2

≤ B ‖yS − ŷS‖1 . (7.11)

The last inequality uses Equation 7.4, since ỹ(j) and ỹ(j−1) differ at a single coordinate,

S(j).

Combining Equations 7.7, 7.9 and 7.10 we have

∥∥ŷ − ŷ′
∥∥2

2

≤ 1

2

(∥∥ŷ − ŷ′
∥∥2

2
+
∥∥ŷ′ − ỹ

∥∥2

2
+ ‖yS − ŷS‖1

)
≤ 1

wp

(‖w‖2 ‖f(x, ỹ)− f(x, ŷ)‖2 + wp ‖yS − ŷS‖1) +
1

2
‖yS − ŷS‖1

≤ 1

wp

‖w‖2 ‖f(x, ỹ)− f(x, ŷ)‖2 +
3

2
‖yS − ŷS‖1 .

112

Using the result from Equation 7.11, we get

∥∥ŷ − ŷ′
∥∥2

2

≤ 1

wp

‖w‖2B ‖yS − ŷS‖1 +
3

2
‖yS − ŷS‖1

≤
(

3

2
+
B ‖w‖2

wp

)
‖yS − ŷS‖1 . (7.12)

We then multiply both sides of the inequality by 1/n and take the square root. Using

1
n

∥∥ŷ − ŷ′
∥∥

1
≤ 1√

n

∥∥ŷ − ŷ′
∥∥

2
finishes the proof.

1√
n

∥∥ŷ − ŷ′
∥∥

2
≤ 1√

n

√(
3

2
+
B ‖w‖2

wp

)
‖yS − ŷS‖1 .

Proposition 1 states that the inference regret is proportional to the L1 distance from

yS to ŷS , multiplied by a model-dependent quantity, O
(

B‖w‖2
nwp

)
. Later in this section, we

discuss how to bound the features’ Lipschitz constant,B, demonstrating that it is typically

a small constant (e.g., 1). Thus, assuming ‖w‖2 is bounded from above, and the weight

on the prior, wp, is bounded from below, the model-dependent term should decrease with

the number of variables, n. For variables bounded in [0, 1], the Hamming distance upper-

bounds the L1 distance. Using this identity, a pessimistic upper bound for the distance

term is ‖yS − ŷS‖1 ≤ |S|. In this case, the regret is proportional to O
(√
|S| /n

)
; i.e.,

the square root of the fraction of the variables that are fixed. While this yields a uniform,

analytic upper bound, we gain more insight by considering the specific contexts.

113

For instance, suppose yS is a set of labels that has been revealed. Then Rn(x,yS ; ẇ)

is the regret of not updating inference conditioned on new evidence, and ‖yS − ŷS‖1 is

the L1 error of the original predictions w.r.t. the true labels. Now, suppose yS is a set of

labels that are fixed from a previous round of inference. Then Rn(x,yS ; ẇ) is the regret

of an approximate inference update, and ‖yS − ŷS‖1 is the L1 distance between the old

predictions and the new predictions in the full inference update. Thus, to minimize this re-

gret, we must fix values that are already close to what we think they will be in the updated

MAP state. This criteria motivates our approximate update methods in Section 7.3.

7.2.2 The Lipschitz Constant of the Features

In this section, we give some intuition on how to bound the Lipschitz constant of the

features, B, by considering a specific example. Suppose the model has a single rule:

X ⇒ Y . The corresponding hinge is f(X, Y) , max{0, X − Y }. Using the fact

that |max{0, a} −max{0, b}| ≤ |a− b|, one can show that ‖f(x,y)− f(x,y′)‖2 ≤

|yi − y′i| ≤ 1, so B = 1.

PSL models typically use rules of this nature, with varying arity (i.e., diadic, triadic,

etc.). In general, B should grow linearly with the number of groundings involving any

single variable (i.e., the maximum degree of the factor graph). The number of groundings

generated by each rule depends on its arity and the data. For instance, the relational rule in

Section 7.1 will ground out once for each edge and each label; if there are 2 labels, and the

maximum degree is bounded by a constant, ∆, then the number of groundings generated

by this rule for any single variable is at most 2∆. Thus, in many practical models, B will

114

be a small constant.

7.3 Algorithms for Online Inference Activation

The bounds presented in Section 7.2.1 suggest that online collective inference under bud-

get constraints is close to the full inference update when one is able to successfully choose

and fix variables whose inferred values will have little or no change. We refer to the com-

plementary process of selecting which variables to infer as activation. In practice, de-

signing an activation algorithm is difficult. The optimization problem required to choose

a set of variables, each with heterogeneous regret and optimization cost, that do not ex-

ceed an optimization budget is an instance of the NP-hard knapsack problem. Given the

intrinsic intractability of selecting an optimal set of variables, we present two algorithms

that employ theoretical insights from the previous section and show promise in empirical

experiments.

7.3.1 Background: ADMM Optimization

To develop activation algorithms, we turn to the optimization technique used to determine

the MAP state in HL-MRFs. Bach et al. (2012) have shown that applying consensus op-

timization using the Alternating Direction Method of Multipliers (ADMM) (Boyd et al.,

2011) provides scalable inference for HL-MRFs. For clearer exposition, we express the

inference in terms of the set of ground rules, G and rewrite the energy function in Sec-

tion 7.1 as:

E(y |x; ẇ) ,
∑
g∈G

wgfg(x,y) +
wp

2
‖y‖2

2

115

Here, wgfg(x,y) is a weighted potential corresponding to a single ground rule. ADMM

substitutes the global optimization problem with local optimizations for each potential

using independent copies of the variables. For each grounding g ∈ G, let yg denote the

variables involved in g and ỹg indicate the local copy of those variables. To reconcile the

local optimizations, ADMM introduces a constraint that local variable copies agree with

the global “consensus” for each variable i involved in the grounding; that is, yg[i] = ỹg[i].

This constraint is transformed into an augmented Lagrangian with penalty parameter ρ >

0 and Lagrange multipliers αg:

min
ỹg

wg fg(x, ỹg) +
ρ

2

∥∥∥ỹg − yg +
1

ρ
αg

∥∥∥2

(7.13)

ADMM iteratively alternates optimizing the local potentials, then updating the consensus

estimates and associated Lagrange multipliers for each variable, as such:

ỹg ← argminỹg
wg fg(x, ỹg) +

ρ

2

∥∥∥ỹg − yg +
1

ρ
αg

∥∥∥2

;

y[i]← meang(ỹg[i]) ; αg[i]← αg[i] + ρ(ỹg[i]− yg[i]) .

A key element of this optimization is the interplay of two components: the weighted

potential corresponding to a grounding and the Lagrangian penalty for deviating from the

consensus estimate. As optimization proceeds, the Lagrange multipliers are updated to

increase the penalty for deviating from the global consensus. At convergence, a balance

exists between the two components, reconciling the local minimizer and the aggregate of

global potentials.

116

7.3.2 ADMM Features

The goal of activation is to determine which variables are most likely to change in a

future inference. From the analysis in the previous section, we can identify several basic

elements for each variable in the model that serve as features for an activation algorithm.

For each variable, we have its value at convergence (y[i]), and for each grounding g, the

weight (wg), the value of the potential (fg(x, ỹg)), and the Lagrange multipliers (αg[i])

measuring the aggregate deviation from consensus. We discuss each of these features to

motivate their importance in an activation algorithm.

The value of a variable at convergence can provide a useful signal in certain situ-

ations, where a model has clear semantics. For example, the formulation of HL-MRFs

often lends itself to a logical interpretation with binary outcomes, as in the cases of collec-

tive classification of attributes that are either present or absent. In this setting, assignments

in the vicinity of 0.5 represent uncertainty, and therefore provide good candidates for ac-

tivation. Unfortunately, this feature is not universal. Many successful HL-MRF models

adopt semantics that use continuous values to model continuous variables, such as pixel

intensity in image completion tasks or Likert-scale ratings in recommender systems. In

this case, the semantics of the variable’s consensus value may provide an ambiguous sig-

nal for activation.

The weighted potentials of each variable contribute directly to the probability of

the MAP configuration. Since the log-probability is proportional to the negated energy,

−E, high weights and high potential values decrease the probability of the assignment.

Intuitively, activating those variables that contribute high weighted potentials provides

117

the best mechanism for approaching the full inference MAP state. A complication to this

approach is that each weighted potential can depend on many variables. However, the

potential value is a scalar quantity and there is no general mechanism to apportion the

loss to the contributing variables.

In contrast, the Lagrange multipliers provide a granular perspective on each vari-

able’s effect on Equation 7.13. For each variable copy (ỹg), the Lagrange multiplier ag-

gregates the difference between the copy and the global consensus across iterations. High

Lagrange multipliers signal discord between the local minimizer and the global mini-

mizer, indicating volatility. Activating variables with high Lagrange multipliers can re-

solve this discord in future inference using updated evidence. However, updated evidence

may also resolve the disagreement between the local and global minimum, obviating an

update to the variable.

7.3.3 Activation Algorithms

Building on our analysis of ADMM optimization, we introduce two activation algorithms

for online collective inference, “agnostic activation” and “relational activation”. Both

algorithms produce a ranking that prioritizes each variable for inclusion in inference. The

key difference between these algorithms is whether new or updated evidence is an input

to the algorithm. Agnostic activation scores variables concurrently with inference, based

on their susceptibility to change in future inferences. In contrast, relational activation

runs prior to inference, with scores based primarily on relationships between variables

and updated evidence in the factor graph.

118

Each approach has different advantages. Agnostic activation scores variables during

inference, providing a performance advantage since the scoring algorithm does not delay

a future run of inference. However, this technique has a slower response to new evidence

since scoring occurs before such evidence is available. Relational activation can respond

to newly-arrived evidence and choose variables related to new evidence, but this requires

delaying scoring which can add a computational overhead to inference.

Both activation algorithms output a ranking of the variables, which requires a scor-

ing function. We introduce two scoring functions that use the ADMM features described

Section 7.3.2. Our first scoring function, VALUE, captures the intuition that uncertain

variables are valuable activation candidates using the function 1− |0.5−y[i]|, where y[i]

is the consensus value for variable i. The second scoring function, WLM, uses both the

weight and Lagrange multipliers of each potential. For each variable, we define a set of

weighted Lagrange multiplier magnitudes,Aw[i] , {|wgαg[i]|}. To obtain a single scalar

score, we take the maximum value of Aw[i].

The agnostic activation algorithm simply ranks each variable by their score from a

scoring function, irrespective of the new evidence. The RELATIONAL algorithm combines

the score with information about the new evidence. Using the existing ground model,

RELATIONAL first identifies all ground potentials dependent on the new evidence. Then,

using these ground potentials as a seed set, the algorithm performs a breadth-first search of

the factor graph adding the variables involved in each factor it encounters to the frontier.

Traversing the factor graph can quickly identify many candidate variables, so we prioritize

variables in the frontier by S
2d

where S is the score assigned by a scoring function and d

is the minimum distance between the variable and an element of the seed set in the factor

119

graph.

The ranking output by either agnostic or relational activation lets us prioritize which

variables to activate. Given a budget for the number or percentage of variables to infer, we

activate a corresponding number of variables from the ranking. The remaining variables

are constrained to their previously inferred values. We selectively ground the model,

including only those rules that involve an activated variable. Following inference on the

ground model, we use the updated optimization state to produce new scores.

When an inactive variable is treated as a constant, it does not have any associated

Lagrange multipliers, and lacks features for the WLM scoring function. Therefore, in-

stead of treating fixed variables as constants, we introduce them as constrained variables

in the optimization. This allows us to generate features by capturing the discrepancy

between a variable’s constrained value and the value of its local copies in groundings

involving activated variables.

Our implementation of the agnostic activation algorithm is extremely efficient; all

necessary features are byproducts of the inference optimization. Once scores are com-

puted and the activated atoms are selected, the optimization state can be discarded to

avoid additional resource commitments. In relational activation, scoring is similarly ef-

ficient, but there is an additional overhead of preserving the ground model to allow fast

traversal of the factor graph. By selectively grounding the model, we replace queries that

scan the entire database, potentially many times, with precise queries that exploit indices

for faster performance. Finally, selectively activating atoms produces an optimization

objective with fewer terms, allowing quicker optimization.

120

7.4 Evaluation

To better understand the regret bounds and approximation algorithms for online infer-

ence, we perform an empirical evaluation on two online collective inference settings. The

first setting is a synthetic online collective classification task where the data generator

allows us to modulate the importance of collective dependencies and control the amount

of noise. The second evaluation setting is a real-world collaborative filtering task, where

user preferences are incrementally revealed and the outputs of a recommender system are

correspondingly updated. In order to support repeated full inference of all variables, both

of these datasets are necessarily small.

In both evaluation settings, we measure regret relative to full inference and infer-

ence error relative to ground truth. The results demonstrate that empirical regret follows

the form of our regret bounds. We also evaluate the approximation algorithms presented

in Section 7.3.3, to investigate whether features from the optimization algorithm can re-

liably determine which variables to activate. The results show that our approximation

algorithms are able to reduce running time by upwards of 65%, with inference regret

relative to full inference.

All experiments are implemented using the open-source PSL framework and our

code is available on GitHub.1

121

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

epochs

in
fe

re
n
c
e
 r

e
g
re

t

scaled regret bound

HighLocal

Balanced

HighRelational

Figure 7.1: Inference regret, w.r.t. full inference, of fixing the original MAP state (i.e., no
updates) in the HIGHLOCAL, HIGHCOLLECTIVE and BALANCED data models.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

epochs

in
fe

re
n
c
e
 r

e
g
re

t

Do Nothing

Random 50%

Value 50%

WLM 50%

Relational 50%

(a) Inference Regret

0 5 10 15 20 25 30 35 40 45 50
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

epochs

M
A

E

Full Inference

Random 50%

Value 50%

WLM 50%

Relational 50%

(b) MAE

Figure 7.2: Inference regret (w.r.t. full inference) and MAE (w.r.t. ground truth) using
various approximation algorithms, with 50% activation, in the COMPLEX data model.

7.4.1 Online Collective Classification

Our evaluation data simulates a collective classification problem of inferring labels for

users in a social network as new evidence is incrementally revealed. Each user is assigned

one of two mutually exclusive labels. Some portion of the users have observed labels,

1
https://github.com/puuj/uai15-boci-code

122

https://github.com/puuj/uai15-boci-code

while the labels of the remaining users are inferred. At each epoch, the label of one more

user is revealed, so the model must update the inferred labels for the remaining users with

unknown labels.

For each user, we generate local and collective features correlated with the user’s

label. Local features are generated for each user and label by drawing from a Gaussian

distribution conditioned on the label, such that the mean is t for the true label and 1− t for

the incorrect label. The collective features are links between users, generated randomly

using the following process: for each pair of users with the same label, a link is generated

with probability p; for each pair of users with different labels, a link is created with

probability 1− p. We refer to p as the affinity of the network.

We model the data using the PSL rules described in Section 7.1 and learn weights

for the model. Varying the parameters of the data generator impacts inference in the

learned model, since the learned weights are proportional to the discriminative power of

their associated rules. For example, varying the distance between the conditional means

of the local features controls the importance of the local evidence rule: when the means

are far apart, local evidence has high discriminative power; however, when the means are

close, local evidence does not provide much signal.

We introduce three data models: HIGHLOCAL (t = .8, p = .75), HIGHCOLLEC-

TIVE (t = .55, p = .9), and BALANCED (t = .7, p = .75). We combine these three

conditions in a fourth data model, COMPLEX, which samples uniformly from the three

settings on a per-user basis resulting in heterogeneous evidence. For each condition, we

generate 10 trials, each with a training social network used to learn the model parameters

and a separate test social network to evaluate inference quality. Both the training and test

123

graph have 100 users, with 60 observed user labels in the training graph and 10 observed

user labels in the test graph. To infer user attributes, we use the simple collective classi-

fication model introduced in Section 7.1. We simulate the process of online inference by

creating a sequence of observations consisting of 50 epochs. In each epoch, the true label

of a previously unknown user is revealed, resulting in 60 observed user labels at the end of

the sequence. For each trial, we generate 10 such sequences from a breadth-first traversal

of the network from a randomly chosen user, resulting in a total of 5000 inferences.

In the first experiment, shown in Figure 7.1 we measure the inference regret of

fixing variables to the initial MAP state (i.e., not updating inference) over 50 epochs,

comparing the HIGHLOCAL, HIGHCOLLECTIVE and BALANCED conditions. Our theo-

retical analysis predicts that the worst-case regret grows at rate O
(
1/
√

epoch
)
. The ex-

perimental results exhibit the same growth rate, which is very pronounced for the HIGH-

COLLECTIVE data model, where variables are strongly interdependent, and less so for

HIGHLOCAL, where variables are largely independent. The key insight is that the collec-

tive nature of the inference task determines the regret of online updates.

In the second experiment (Figure 7.2), we compare the approximate scoring algo-

rithms with a budget of 50% of unknowns to running full inference on the COMPLEX

network. We measure significance across 100 total sequences using a paired t-test with

rejection threshold .05. For inference regret, we compare against the static algorithm,

DONOTHING, which does not update the MAP state, and a random baseline, RANDOM,

that fixes an arbitrary subset of 50% of the variables. We compare these to three approx-

imation algorithms described in Section 7.3: VALUE, which uses the value assigned to

the variable; WLM, which uses the maximum of the weighted Lagrange multipliers; and

124

RELATIONAL, which uses WLM to prioritize exploration.

All methods exhibit low regret relative to full inference, contrasting the high regret

of the static algorithm, although VALUE exhibits somewhat higher regret. The WLM and

RELATIONAL methods have significantly lower regret relative to RANDOM, in 98% and

100% of epochs, respectively. We also compare the mean average error (MAE), with re-

spect to ground truth, of using full inference vs. the approximations. This illustrates that

the approximation algorithms remain competitive with full inference, although VALUE

again lags in accuracy. Here, the WLM and RELATIONAL methods have significantly

lower error than RANDOM in 80% and 100% of epochs, respectively. Comparing the run-

ning times highlights the computational benefit of using the approximation algorithms.

The average running time for a single trial (which includes training and 10 random se-

quences of revealed variables) using full inference is 3076 seconds, while approximate

inference requires only 955 seconds, a reduction of 69%, with inference time varying less

than 3% across methods.

7.4.2 Collaborative Filtering

Our second evaluation task is a collaborative filtering task that employs a collective model

to infer the preferences of users. We use the Jester dataset (Goldberg et al., 2001) which

includes ratings from 24,983 users on a set of 100 jokes. The task in this setting is to infer

the user’s rating of each joke. We use the model from Bach et al. (2013) which assigns

ratings to jokes based on the joke’s similarity to other jokes rated highly by the user. Joke

similarity is measured using the mean-adjusted cosine similarity of the observed ratings

125

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

% observed

in
fe

re
n

c
e

 r
e

g
re

t

Do Nothing

Random 25%

Value 25%

WLM 25%

Relational 25%

(a) Inference Regret (25% act.)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.2335

0.234

0.2345

0.235

0.2355

0.236

0.2365

% observed

R
M

S
E

Full Inference

Random 25%

Value 25%

WLM 25%

Relational 25%

(b) RMSE (25% act.)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

% observed

in
fe

re
n

c
e

 r
e

g
re

t

(c) Inference Regret (50% act.)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.23

0.231

0.232

0.233

0.234

0.235

0.236

% observed

R
M

S
E

(d) RMSE (50% act.)

Figure 7.3: Inference regret (w.r.t. full inference) and RMSE (w.r.t. ground truth) for the
Jester dataset.

of two jokes. (Refer to Bach et al. (2013) for further model details.) We sample 200 users

who have rated all 100 jokes and split them into 100 training users and 100 testing users.

We generate 10 sequences, each of which consists of a training and testing phase. Model

weights are learned using 75% of the training users’ ratings observed. During testing, we

incrementally reveal [25%, 30%, 40%, . . . , 75%] of the testing users’ ratings, performing

online collective inference at each epoch.

We compare inference regret, relative to full inference, for the RANDOM, VALUE,

126

WLM and RELATIONAL approximate methods. We also plot the RMSE, relative to

ground truth, for full inference and all approximate methods. Figure 7.3a-b show results

for 25% activation, and Figure 7.3c-d show 50% activation. Inference regret follows a

similar pattern for both budgets, with VALUE showing increasing regret over epochs, and

the remaining methods exhibiting level or diminishing regret after the first few epochs.

The high regret for VALUE can be explained by considering the RMSE—VALUE actually

improves the results of full inference, incurring high regret but low RMSE. Our intuition

for this improvement is that VALUE fixes polarized user ratings and allows these ratings

to have greater influence on other unknown ratings, while full inference produces more

moderate ratings for the entire set. The other approximation algorithms remain close

to the full inference RMSE (at 50% activation) or perform slightly worse (at 25% ac-

tivation). Comparing the running times, we find a similar improvement in speed. The

average time for a sequence using full inference is 137 seconds, while the approximate

methods require only 46 seconds, yielding a speedup of 66%. Approximation methods

had consistent timing, varying less than 6%.

7.5 Discussion

In this chapter, we introduce a new problem, budgeted online collective classification,

which addresses a common problem setting where online inference is necessary but full

inference is infeasible, thereby requiring approximate inference updates. Our contribu-

tions are: (1) a formal analysis of online collective inference, introducing the concept of

inference regret to measure the quality of the approximation; (2) analytic upper bounds

127

on the inference regret incurred by strongly convex inference; and (3) several algorithms

to address the practical problem of activation (i.e., choosing which variables to infer at

each epoch), through a close analysis of the MAP inference optimization. The empirical

results demonstrate that our activation algorithms exhibit low inference regret and error

that is competitive with full inference, while reducing the time required for inference by

65% or more.

This work inspires many exciting areas of future research. One open question is

whether one can derive a tighter regret bound using the mechanics of the activation strat-

egy, thus characterizing how performance degrades as a function of the budget. We are

also interested in training an “optimal” activation policy that is trained using the variables

whose values change the most during full inference. Finally, a crucial assumption in our

analysis is that the model structure is fixed, but it is useful to consider the setting in which

the set of variables change over time, allowing us to address situations such as new users

joining a social network.

128

Chapter 8: Conclusion and Future Work

In this dissertation, I have developed a framework for knowledge graph construction that

addresses many of the practical challenges confronting knowledge base construction sys-

tems. Knowledge graph construction requires overcoming many pathological errors in

information extraction, a problem I address through the formulation of knowledge graph

identification. Implementations of knowledge graph identification must incorporate sta-

tistical features from information extractions systems and ontological constraints, and I

develop a knowledge graph identification model that is capable of using both these sources

of information. Entity resolution is a significant hurdle for knowledge graph construction,

and I develop a general model for entity resolution that exploits the relational features in

a knowledge graph and is adaptable to many different scenarios.

While the models I develop integrate many powerful features, a key concern is that

such models will not scale to realistic problem settings. My choice of hinge-loss Markov

random fields alleviates scalability concerns by framing the knowledge graph identifi-

cation problem as convex optimization. I further improve performance by developing a

distributed version of knowledge graph identification.

Finally, I explore what I believe is a new frontier for probabilistic models: stream-

ing (or online) inference. Many real-world problem settings, such as knowledge graph

129

construction, require updating the inferences of a probabilistic model with new evidence.

However, scant research has been devoted to practical approaches for adapting inference

results in response to evidence. My work on online collective inference addresses this

important area. I introduce inference regret to quantify the consequences of making an

approximate update to inference results. By bounding inference regret, I show that such

updates are feasible and can preserve inference quality when the updated variables are

carefully chosen. I devise several algorithms for updating inference that show attractive

empirical performance.

8.1 Future Work

The pursuit of knowledge has tantalized humanity for ages, and remains among the cen-

tral challenges in artificial intelligence research. Many open questions and practical chal-

lenges still confront knowledge graph construction. Two areas where I see great rewards

from further research are unifying diverse approaches in the knowledge base construction

community, extending my work on online inference to address a broader set of prob-

lem settings, and exploring potential applications of the algorithms I devised for online

inference to active approaches for probabilistic inference.

While I have been working on knowledge graph identification, a number of different

and very promising approaches to information extraction, natural language, understanding

and knowledge base construction have been developed. One such development has been

the rise of vector space models of language. These models, often trained with recurrent

neural networks, capture a latent representation of entities, and use vector operations to

130

determine the relationships between entities. These features could easily be incorporated

into knowledge graph identification, and might provide a unique signal to complement

the inputs from an information extraction system. Other popular models in knowledge

base construction include matrix factorization approaches that are capable of populating

many missing relationships between entities and locally-grounded, random walk based

inference approaches. Finding the right way to integrate these approaches with knowledge

graph identification while preserving the unique strengths of each remains a compelling

open problem.

The second extension to my dissertation research that seems extremely promising

is expanding online collective inference to accommodate a more diverse set of problem

settings. In my work on online inference, a key limitation is that the structure of the

graphical model and the inferred variables are both fixed. This constraint poses problems

for many real-world problems which require open-world reasoning, such as when a new

user or a new item is added to a recommender system, or a new entity is added to a

knowledge graph. I believe that extending online collective inference to include open-

world reasoning under certain circumstances may be straightforward. The main obstacle

is that the variables in the probability distribution change over time, and I suspect the key

to this obstacle may lie in work on default reasoning and lazy inference. By identifying

the conditions under which inference can be updated with new variables without requiring

a recomputation of the entire MAP state, I anticipate the bound on inference regret can be

applied to a broader set of problem settings, and this may in turn yield new insights into

algorithms for online inference.

A third area I hope to explore in future work is the potential of active approaches to

131

probabilistic inference. The problem setting I would like to address is one where evidence

can be actively acquired by consulting an oracle, which may take the form of a label pro-

vided by a human or a value generated through an expensive computation. The expense

of acquiring labels constrains the system to only request the most useful labels. Addi-

tionally, once labels are acquired, inference must be repeated using the new evidence.

This setting bears many similarities to the online setting. Approximate, partial inference

updates may be the key to tractablity in this setting. However, the same methods used for

online inference have another application – choosing which labels to acquire. One possi-

bility is using the algorithms designed to activate variables for online inference to choose

which labels to actively query. In exploring this setting, it may be the case that the algo-

rithms that are most effective for choosing informative labels to acquire differ from the

algorithms that select the best variables to infer. Understanding the differing performance

of these algorithms may lend new insight into my existing approach to online inference,

as well as inspire new algorithms for approximate online inference.

132

Appendix A: Sample PSL Program for Knowledge Graph Identification

The following code demonstrates a very simple, but complete PSL program that imple-

ments some of the features of knowledge graph identification. The code is written in

Groovy, an easily-specified, interpreted scripting language that compiles to Java code.

The use of Groovy as an interface to PSL allows users to easily specify and manipu-

late models using an intuitive syntax rather than dealing with the complex object model

defined in the full Java software package. Detailed comments that explain the program

follow the code.

1 \\Instantiate datastore and model
2 ConfigBundle emptyConfig = new EmptyBundle();
3 DataStore datastore = new RDBMSDataStore(
4 new H2DatabaseDriver(Type.Disk,
5 ’/tmp/psl’, true, emptyConfig);
6 PSLModel model = new PSLModel(this, datastore);
7

8 \\define model predicates
9 ArgumentType uid = ArgumentType.UniqueID;

10 model.add predicate: "Lbl", types: [uid, uid];
11 model.add predicate: "CandLbl", types: [uid, uid];
12 model.add predicate: "Rel", types: [uid, uid, uid];
13 model.add predicate: "CandRel", types: [uid, uid, uid];
14 model.add predicate: "Dom", types: [uid, uid];
15 model.add predicate: "Mut", types: [uid, uid];
16 model.add predicate: "Sub", types: [uid, uid];
17

18 \\ define model rules
19 model.add rule: ˜Lbl(E,L), weight : 0.5;
20 model.add rule: ˜Rel(E1,E2,R), weight : 0.5;

133

21 model.add rule: (CandLbl(E,L)) >> Lbl(E,L),
22 weight : 1;
23 model.add rule: (CandRel(E1,E2,R)) >> Rel(E1,E2,R),
24 weight : 1;
25 model.add rule: (Dom(R,L) & Rel(E1,E2,R)) >> Lbl(E1,L),
26 constraint:1;
27 model.add rule: (Mut(L1,L2) & Lbl(E,L1)) >> ˜Lbl(E,L2),
28 constraint:true;
29 model.add rule: (Sub(L1,L2) & Lbl(E,L1)) >> Lbl(E,L2),
30 constraint:true;
31

32 \\load data and set up database
33 Partition inferences = datastore.getPartition("output");
34 Partition evidence = datastore.getPartition("input");
35

36 def pNames = ["CandLbl", "CandRel", "Dom", "Mut", "Sub"];
37 PredicateFactory pFactory = PredicateFactory.getFactory();
38 for(String pName : pNames){
39 Predicate p = pFactory.getPredicate(pName);
40 Inserter inserter = datastore.getInserter(p,evidence);
41 InserterUtils.loadDelimitedData(inserter, pName+".tsv");
42 }
43

44 Database inferenceDB = data.getDatabase(inferences,
45 [CandLbl, CandRel, Domain, Mut, Sub], evidence);
46

47 \\Run inference
48 MPEInference mpe = new LazyMPEInference(model,
49 inferenceDB,
50 emptyConfig);
51 InferenceResult result = mpe.optimize();
52

53 mpe.close(); inferenceDB.close(); datastore.close();

Detailed Comments

Line 3 of the program instantiates a datastore, PSL’s mechanism for interacting with

databases. The database implementation in this case is a relational database management

system. The arguments to the constructor specify that an H2 Database should be used,

and a new database file created at the path \tmp\psl, with no additional configuration

134

modification.

Line 6 instantiates a PSL model, and in lines 10-16, the logical predicates that define

the model are defined. While the arguments to the predicate can take many possible types

(such as String, Double, Integer, Date), in this model all arguments are unique identifiers.

For readability, this argument type is defined on line 9.

The next component of a PSL model is the specification of logical rules that deter-

mine relationships between variables. Line 19 and 20 contain rules specifying negative

priors for the Lbl and Rel predicates, respectively. Note that the symbol specifies

negation in PSL. The negative prior enforces that any fact unsupported by evidence will

have a false value. To avoid overwhelming evidence, the negative prior is given a low

weight (0.5).

Lines 21-24 link the facts in the knowledge graph to candidate extractions in the

evidence. In practice, a variety of different techniques would be used to generate these

extractions, and each technique would correspond to a separate pair of rules. In this

simple example, only one pair of rules is used. These rules are given a low weight of 1.0,

although this weight is higher than the prior. In a more sophisticated program, the weight

of each rule would be learned.

Lines 25-30 introduce ontological constraints in the model. Lines 25-26 contain a

rule expressing the Domain constraint: if the domain of a relation R is L, and the relation

R holds between entities E1 and E2, then the entity E1 has label L. Line 26 specifies that

this rule is to be treated as a constraint: any feasible solution to the inference problem

must obey this constraint. A second way of thinking of constraints is that they are rules

with infinite weight; the probability of any interpretation with an unsatisfied constraint

135

thus approaches 0. Lines 27-28 similarly define the mutual exclusion and subsumption of

labels as constraints.

Lines 32-33 define partitions of the database for inferred variables and evidence

atoms. A partition is a logical division of atoms in the database. Partitions help specify

the role of an atom during learning or inference by allowing the user to easily differentiate

the atoms that will be used as observed evidence, left unobserved and excluded from the

model, or selected as targets for the inference process. Here, I define two partition - one

for the output of the model, the inferences of the knowledge graph, and the second as the

input to the model of extracted candidates and ontological relationships. These partitions

are references through the names “output” and “input” respectively.

In lines 36-42, I load data into the database. Line 36 specifies the names of the

predicates for which data is loaded. Starting on line 38, a for loop iterates over each of

these predicate names. On line 39, a Predicate object is retrieved for the predicate that

corresponds to the given predicate name. For this predicate, an Inserter object is generated

by the datastore on line 40. The inserter can be used to insert data for a specified predicate

into a specific partition, in this case the evidence partition. This inserter is used to load

data on line 41 with the help of a convenience method from a utility class, InserterUtils.

The data is loaded from a file specified as the second argument. In this program, the

files are assumed to be in the working directory and named based on the predicate for

which they contain data. For example, CandRel.tsv would contain data, consisting of

a series of lines, each specifying an atom with the arguments delimited by tabs, for the

CandRel predicate.

Line 44-45 specify a Database object for use during inference. This nomenclature

136

may be somewhat confusing, since it conflicts with that of databases in the datastore. In

PSL, a database is a specification of evidence and inference partitions, accompanied by

a set of atoms that are fully observed. In this case, the first argument to the getDatabase

function is the “write” partition where new inferences will be written. The second argu-

ment is the set of predicates that are fully observed. The consequence of specifying these

predicates as fully observed is that PSL will make a closed-world assumption for each

predicate, assigning any atom that is absent from the inference and evidence partitions a

value of 0. The final argument to the function is the evidence partition. For convenience,

PSL allows an arbitrary number of partitions to be specified as evidence, however only

one is necessary in this simple program.

Lines 48-51 perform inference in the PSL model. Line 48-50 define the infer-

ence object. The arguments to the inference object are the model (which specifies the

rules the model will use during inference), the inference database (specifying which

atoms to use as evidence and the location for new inferences), and a configuration pack-

age, which is unnecessary for this example. The inference package in this example is

LazyMPEInference. Lazy inference is an iterative procedure where inference targets

are computed using available evidence. After inference is completed, the grounding pro-

cess is repeated using the new inferences as well as the initial evidence. The benefit of

lazy inference is that the inference targets do not need to be enumerated and specified

in advance. The process of enumerating inference targets may be cumbersome for some

users. Additionally, in models where outputs are sparse, lazy inference can improve scal-

ability by reducing the memory footprint of the model. The drawback of lazy inference is

that inference must be run repeatedly until no new inferences are possible.

137

Finally, on line 51, the inference optimization is called. By default, PSL will com-

pile the model and evidence into a set of ground rules, convert each rule into an optimiza-

tion potential, and then use the ADMM algorithm to perform a joint optimization across

these potentials to determine the configuration of variables that minimizes the energy

function, thus maximizing the probability of the output.

In practice, it is often convenient to export the inference output from the database

to an easily manipulable format, such as a text file. However, for the sake of brevity, this

is not included in the example. Line 52 simple closes the objects constructed during the

program, committing any output and freeing any resources held by the program to the

system.

138

Appendix B: Additional Results for Knowledge Graph Identification

B.1 Baseline Results

Table B.1: Results for the baseline model on the closed-world knowledge graph iden-
tification problem for NELL for all facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.783 0.644 1.000
0.100 0.804 0.677 0.989
0.200 0.804 0.677 0.989
0.300 0.804 0.677 0.989
0.400 0.804 0.677 0.989
0.500 0.742 0.695 0.797
0.600 0.695 0.702 0.689
0.700 0.144 0.987 0.078
0.800 0.144 0.987 0.078
0.900 0.144 0.987 0.078
1.000 0.144 0.987 0.078

139

Table B.2: Results for the baseline model on the closed-world knowledge graph identifi-
cation problem for NELL for relation facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.834 0.715 1.000
0.100 0.839 0.724 0.998
0.200 0.839 0.724 0.998
0.300 0.839 0.724 0.998
0.400 0.839 0.724 0.998
0.500 0.735 0.788 0.688
0.600 0.641 0.847 0.515
0.700 0.102 0.990 0.054
0.800 0.102 0.990 0.054
0.900 0.102 0.990 0.054
1.000 0.102 0.990 0.054

Table B.3: Results for the baseline model on the closed-world knowledge graph identi-
fication problem for NELL for label facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.713 0.553 1.000
0.100 0.751 0.611 0.975
0.200 0.751 0.611 0.975
0.300 0.751 0.611 0.975
0.400 0.751 0.611 0.975
0.500 0.751 0.611 0.975
0.600 0.751 0.611 0.975
0.700 0.208 0.985 0.116
0.800 0.208 0.985 0.116
0.900 0.208 0.985 0.116
1.000 0.208 0.985 0.116

140

Table B.4: Comparison of the baseline model and PSL-KGI on the closed-world knowl-
edge graph identification problem for NELL for all facts. The results show a sample of
facts with the maximally-differing truth values between the two methods.

Fact Baseline PSL-KGI

REL(cubs,playoffs,teamWonTrophy) 0.67 0.00
REL(packers,playoffs,teamWonTrophy) 0.67 0.00
REL(chargers,playoffs,teamWonTrophy) 0.67 0.00
REL(colts,playoffs,teamWonTrophy) 0.67 0.00
REL(aol,bebo,acquired) 0.67 0.00
REL(lakers,playoffs,teamWonTrophy) 0.67 0.00
REL(adobe,adobe acrobat,

producesProduct) 0.67 0.00

141

B.2 Results Excluding Extractor Source Information

Table B.5: Results for the NoSrcs model on the closed-world knowledge graph identifi-
cation problem for NELL for all facts. The model does not use different predicates for
the different NELL extractors. The results show the performance soft-truth thresholds.

threshold F1 Precision Recall

0.000 0.783 0.644 1.000
0.100 0.810 0.687 0.986
0.200 0.810 0.687 0.985
0.300 0.810 0.687 0.985
0.400 0.810 0.687 0.985
0.500 0.810 0.687 0.985
0.600 0.823 0.737 0.932
0.700 0.801 0.848 0.759
0.800 0.536 0.975 0.370
0.900 0.450 0.993 0.291
1.000 0.377 0.994 0.232

Table B.6: Results for the NoSrcs model on the closed-world knowledge graph identifi-
cation problem for NELL for relation facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.834 0.715 1.000
0.100 0.849 0.742 0.993
0.200 0.849 0.742 0.992
0.300 0.849 0.742 0.992
0.400 0.849 0.742 0.992
0.500 0.849 0.742 0.992
0.600 0.850 0.744 0.992
0.700 0.806 0.792 0.821
0.800 0.349 0.940 0.214
0.900 0.162 0.982 0.088
1.000 0.114 0.982 0.060

142

Table B.7: Results for the NoSrcs model on the closed-world knowledge graph identi-
fication problem for NELL for label facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.713 0.553 1.000
0.100 0.751 0.612 0.974
0.200 0.751 0.612 0.974
0.300 0.751 0.612 0.974
0.400 0.752 0.612 0.974
0.500 0.752 0.612 0.974
0.600 0.775 0.724 0.834
0.700 0.791 0.992 0.658
0.800 0.768 0.996 0.625
0.900 0.768 0.996 0.625
1.000 0.679 0.997 0.514

Table B.8: Comparison of the NoSrcs model and PSL-KGI on the closed-world knowl-
edge graph identification problem for NELL for all facts. The results show a sample of
facts with the maximally-differing truth values between the two methods.

Fact NoSrcs PSL-KGI

LBL(hash brown potatoes,food) 0.54 0.95
LBL(doctor zhivago,creativework) 0.57 0.97
LBL(doctor zhivago,movie) 0.57 0.97
LBL(twilight,creativework) 0.61 0.97
LBL(twilight,movie) 0.61 0.97
LBL(sideways,creativework) 0.61 0.97
LBL(sideways,movie) 0.61 0.97
LBL(boogie nights,creativework) 0.64 0.97

143

B.3 Results Excluding Entity Resolution Information

Table B.9: Results for the NoER model on the closed-world knowledge graph identifica-
tion problem for NELL for all facts. The model does not use entity resolution rules or
information in the model. The results show the performance soft-truth thresholds.

threshold F1 Precision Recall

0.000 0.783 0.644 1.000
0.100 0.810 0.687 0.985
0.200 0.810 0.687 0.985
0.300 0.811 0.690 0.984
0.400 0.827 0.724 0.964
0.500 0.851 0.768 0.955
0.600 0.848 0.787 0.920
0.700 0.821 0.820 0.821
0.800 0.697 0.882 0.576
0.900 0.543 0.896 0.389
1.000 0.414 0.996 0.261

144

Table B.10: Results for the NoER model on the closed-world knowledge graph identifi-
cation problem for NELL for relation facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.834 0.715 1.000
0.100 0.849 0.742 0.992
0.200 0.849 0.742 0.992
0.300 0.849 0.742 0.992
0.400 0.849 0.742 0.992
0.500 0.848 0.742 0.989
0.600 0.843 0.757 0.952
0.700 0.807 0.785 0.830
0.800 0.619 0.845 0.488
0.900 0.380 0.779 0.251
1.000 0.090 0.989 0.047

Table B.11: Results for the NoER model on the closed-world knowledge graph identi-
fication problem for NELL for label facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.713 0.553 1.000
0.100 0.751 0.612 0.974
0.200 0.751 0.612 0.974
0.300 0.755 0.618 0.969
0.400 0.790 0.694 0.917
0.500 0.857 0.819 0.899
0.600 0.857 0.846 0.867
0.700 0.845 0.889 0.806
0.800 0.811 0.928 0.720
0.900 0.761 0.996 0.616
1.000 0.759 0.997 0.613

145

Table B.12: Comparison of the NoER model and PSL-KGI on the closed-world knowl-
edge graph identification problem for NELL for all facts. The results show a sample of
facts with the maximally-differing truth values between the two methods.

Fact NoER PSL-KGI

LBL(ussr,organization) 0.24 1.00
LBL(ampalaya,food) 0.35 0.99
LBL(ampalaya,vegetable) 0.35 0.99
LBL(acc conference,organization) 0.37 1.00
LBL(acc conference,sportsleague) 0.37 1.00
LBL(bell centre,building) 0.40 1.00
LBL(bell centre,location) 0.42 1.00
LBL(bell centre,attraction) 0.43 1.00

146

B.4 Results Excluding Ontological Information

Table B.13: Results for the NoOnto model on the closed-world knowledge graph iden-
tification problem for NELL for all facts. The model does not use ontological rules or
information in the model. The results show the performance soft-truth thresholds.

threshold F1 Precision Recall

0.000 0.783 0.644 1.000
0.100 0.804 0.677 0.989
0.200 0.804 0.677 0.989
0.300 0.804 0.677 0.989
0.400 0.800 0.682 0.969
0.500 0.830 0.815 0.845
0.600 0.816 0.832 0.800
0.700 0.757 0.853 0.681
0.800 0.689 0.880 0.566
0.900 0.217 0.983 0.122
1.000 0.165 0.985 0.090

147

Table B.14: Results for the NoOnto model on the closed-world knowledge graph identi-
fication problem for NELL for relation facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.834 0.715 1.000
0.100 0.839 0.724 0.998
0.200 0.839 0.724 0.998
0.300 0.839 0.724 0.998
0.400 0.834 0.734 0.966
0.500 0.817 0.824 0.809
0.600 0.794 0.852 0.744
0.700 0.699 0.864 0.587
0.800 0.649 0.860 0.521
0.900 0.169 0.982 0.092
1.000 0.086 0.988 0.045

Table B.15: Results for the NoOnto model on the closed-world knowledge graph identi-
fication problem for NELL for label facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.783 0.644 1.000
0.100 0.810 0.687 0.985
0.200 0.810 0.687 0.985
0.300 0.811 0.690 0.984
0.400 0.827 0.724 0.965
0.500 0.851 0.767 0.956
0.600 0.848 0.786 0.921
0.700 0.824 0.821 0.827
0.800 0.710 0.884 0.594
0.900 0.570 0.899 0.418
1.000 0.439 0.993 0.281

148

Table B.16: Comparison of the NoOnto model and PSL-KGI on the closed-world knowl-
edge graph identification problem for NELL for all facts. The results show a sample of
facts with the maximally-differing truth values between the two methods.

Fact NoOnto PSL-KGI

REL(community college,baseball,
teamPlaysSport) 0.81 0.00

REL(convention center,anaheim,
stadiumInCity) 0.81 0.00

LBL(ncaa,football) 0.80 0.01
LBL(comiskey park,location) 0.24 1.00
LBL(cardiff intl arena,location) 0.24 1.00
LBL(buck shaw stadium,building) 0.24 1.00
LBL(buck shaw stadium,attraction) 0.24 1.00
LBL(brian rogers,person) 0.24 1.00
LBL(david dejesus,person) 0.24 1.00
LBL(moises alou,person) 0.24 1.00

149

B.5 Results for the Knowledge Graph Identification Model

Table B.17: Results for the KGI model on the closed-world knowledge graph identifica-
tion problem for NELL for all facts. The model uses ontological rules, entity resolution
rules, and extractor confidence rules. The results show the performance soft-truth thresh-
olds.

threshold F1 Precision Recall

0.000 0.783 0.644 1.000
0.100 0.810 0.687 0.985
0.200 0.810 0.687 0.985
0.300 0.811 0.690 0.984
0.400 0.827 0.724 0.965
0.500 0.851 0.767 0.956
0.600 0.848 0.786 0.921
0.700 0.824 0.821 0.827
0.800 0.710 0.884 0.594
0.900 0.570 0.899 0.418
1.000 0.439 0.993 0.281

150

Table B.18: Results for the KGI model on the closed-world knowledge graph identifica-
tion problem for NELL for relation facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.834 0.715 1.000
0.100 0.849 0.742 0.992
0.200 0.849 0.742 0.992
0.300 0.849 0.742 0.992
0.400 0.849 0.742 0.992
0.500 0.848 0.742 0.988
0.600 0.843 0.756 0.952
0.700 0.809 0.786 0.834
0.800 0.641 0.849 0.514
0.900 0.425 0.798 0.290
1.000 0.144 0.979 0.077

Table B.19: Results for the KGI model on the closed-world knowledge graph identifi-
cation problem for NELL for label facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.713 0.553 1.000
0.100 0.751 0.612 0.974
0.200 0.751 0.612 0.974
0.300 0.755 0.618 0.969
0.400 0.792 0.695 0.920
0.500 0.858 0.818 0.903
0.600 0.857 0.845 0.870
0.700 0.849 0.886 0.814
0.800 0.814 0.927 0.725
0.900 0.770 0.994 0.628
1.000 0.761 0.996 0.616

151

B.6 Results for the Open-World Knowledge Graph Identification Model

Table B.20: Results for the KGI model on the open-world knowledge graph identification
problem for NELL for all facts. The model uses ontological rules, entity resolution rules,
and extractor confidence rules and does not restrict inferences to the test set. The results
show the performance soft-truth thresholds.

threshold F1 Precision Recall

0.000 0.783 0.644 1.000
0.100 0.816 0.707 0.964
0.200 0.854 0.773 0.955
0.300 0.851 0.778 0.939
0.400 0.855 0.801 0.916
0.500 0.848 0.826 0.871
0.600 0.818 0.867 0.775
0.700 0.784 0.887 0.703
0.800 0.750 0.915 0.636
0.900 0.721 0.925 0.591
1.000 0.526 0.928 0.367

152

Table B.21: Results for the KGI model on the open-world knowledge graph identifica-
tion problem for NELL for relation facts. The results show the performance soft-truth
thresholds.

threshold F1 Precision Recall

0.000 0.834 0.715 1.000
0.100 0.846 0.756 0.961
0.200 0.846 0.759 0.957
0.300 0.845 0.761 0.949
0.400 0.844 0.773 0.929
0.500 0.834 0.793 0.880
0.600 0.808 0.837 0.781
0.700 0.766 0.849 0.698
0.800 0.737 0.875 0.637
0.900 0.696 0.883 0.574
1.000 0.411 0.857 0.270

Table B.22: Results for the KGI model on the open-world knowledge graph identification
problem for NELL for label facts. The results show the performance soft-truth thresholds.

threshold F1 Precision Recall

0.000 0.713 0.553 1.000
0.100 0.770 0.639 0.968
0.200 0.868 0.797 0.952
0.300 0.862 0.810 0.922
0.400 0.874 0.854 0.894
0.500 0.871 0.887 0.856
0.600 0.836 0.923 0.764
0.700 0.815 0.955 0.710
0.800 0.773 0.992 0.634
0.900 0.764 0.997 0.619
1.000 0.689 0.997 0.526

153

Table B.23: Comparison of the open-world model to the closed-world model for all facts
inferred by the open-world. The results show a sample of facts where the open-world
truth value is much higher than the closed-world truth value.

Fact KGI-Complete KGI

REL(bruins,banknorth garden,
teamhomestadium) 1.00 0.00

REL(bruins,fleet center,atlocation) 1.00 0.00
REL(bruins,nhl,subpartof) 1.00 0.00
REL(rangers,hockey,teamplayssport) 1.00 0.00
REL(lemur,jamie callan,

mlsoftwareauthor) 1.00 0.00
LBL(lanni,agent) 1.00 0.00
LBL(eibe frank,person) 1.00 0.00
REL(eibe frank,weka,involvedwith) 1.00 0.00
REL(washington d c,anacostia museum,

citymuseums) 1.00 0.00
LBL(anacostia museum,building) 1.00 0.00

154

Table B.24: Comparison of the open-world model to the closed-world model for all facts
inferred by the open-world. The results show a sample of facts where the open-world
truth value is much lower than the closed-world truth value.

Fact KGI-Complete KGI

REL(rfk memorial stadium,washington,
stadiumincity) 0.00 1.00

REL(charlotte bobcats,
time warner cable arena,
teamhomestadium) 0.01 0.96

REL(boston celtics,los angeles,
teamplaysincity) 0.00 0.94

REL(denver nuggets,los angeles,
teamplaysincity) 0.00 0.94

REL(cleveland cavaliers,los angeles,
teamplaysincity) 0.00 0.94

REL(detroit pistons,los angeles,
teamplaysincity) 0.00 0.94

REL(georgia tech,basketball,
teamplayssport) 0.01 0.95

REL(pittsburgh steelers,baltimore,
teamplaysincity) 0.00 0.94

REL(san diego chargers,super bowl,
teamwontrophy) 0.01 0.92

REL(seahawks,super bowl,
teamwontrophy) 0.01 0.92

LBL(congo,country) 0.01 0.86
REL(qwest field,seattle,

stadiumincity) 0.00 0.85
REL(lusaka,zambia,cityincountry) 0.03 0.87

155

Figure B.1: This figure shows the precision-recall curve for the different knowledge graph
construction models. The baseline model, which does not use any collective reasoning,
severely underperforms all other approaches. Models that omit the confidence informa-
tion of uncertain sources (orange squares), entity resolution (yellow exs), or ontological
information (purple diamonds) do not perform as well as knowledge graph identification
(green hexagons). Complete knowledge graph identification (blue circles) in the open-
world setting, infers a complete knowledge graph and demonstrates good performance
but suffers from low recall at the highest precision.

156

Bibliography

U. Acar, A. Ihler, R. Mettu, and O. Sümer. Adaptive Inference on General Graphical
Models. In UAI, 2008.

U. Acar, A. Ihler, R. Mettu, and O. Sümer. Adaptive Updates for MAP Configurations
with Applications to Bioinformatics. IEEE Statistical Signal Processing (SSP), pages
413–416, 2009.

G. Angeli, J. Tibshirani, J. Y. Wu, and C. D. Manning. Combining Distant and Partial Su-
pervision for Relation Extraction. In Proceedings of Conference on Empirical Methods
in Natural Language Processing, 2014.

G. Antoniou and F. Van Harmelen. A Semantic Web Primer. MIT press, 2004.

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A
Nucleus for a Web of Open Data. The Semantic Web, pages 722–735, 2007.

F. Baader, I. Horrocks, and U. Sattler. Description Logics as Ontology Languages for the
Semantic Web. Mechanizing Mathematical Reasoning, pages 228–248, 2005.

S. H. Bach, M. Broecheler, L. Getoor, and D. P. O’Leary. Scaling MPE Inference for Con-
strained Continuous Markov Random Fields with Consensus Optimization. In NIPS,
2012.

S. H. Bach, B. Huang, B. London, and L. Getoor. Hinge-Loss Markov Random Fields:
Convex Inference for Structured Prediction. In UAI, 2013.

S. H. Bach, M. Broecheler, B. Huang, and L. Getoor. Hinge-Loss Markov Random Fields
and Probabilistic Soft Logic. arXiv preprint, arXiv:1505.04406 [cs.LG], 2015.

N. Balcan, A. Blum, and Y. Mansour. Exploiting Ontology Structures and Unlabeled Data
for Learning. In ICML, 2013.

A. Barr and J. Davidson. Knowledge Representation, volume 1, pages 141–222. William
Kaufmann, Los Altos, CA, 1981.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific american, 284
(5):28–37, 2001.

157

I. Bhattacharya and L. Getoor. Collective Entity Resolution in Relational Data. ACM
Transactions on Knowledge Discovery and Datamining, 1(1), 2007.

M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string sim-
ilarity measures. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 39–48. ACM, 2003.

C. Bizer and A. Seaborne. D2RQ–Treating Non-RDF Databases as Virtual RDF Graphs.
In ISWC, 2004.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann.
{DBpedia} - a Crystallization Point for the Web of Data. Web Semantics: Science,
Services and Agents on the World Wide Web, 7(3):154 – 165, 2009. ISSN 1570-8268.
The Web of Data.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3, 2003.

M. Boden. Mind As Machine: A History of Cognitive Science. Oxford University Press,
Inc., New York, NY, USA, 2008. ISBN 019954316X, 9780199543168.

P. L. Boeuf. FRBR and Further. Cataloging & classification quarterly, 32(4):15–52,
2001.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and
Statistical Learning Via the Alternating Direction Method of Multipliers. Foundations
and Trends Machine Learning, 3(1):1–122, 2011.

R. d. S. Braz, E. Amir, and D. Roth. Lifted First-Order Probabilistic Inference. In IJCAI,
2005.

D. Brickley and L. Miller. FOAF Vocabulary Specification 0.98, 2010. see http://
xmlns.com/foaf/spec/20100809.html.

M. Broecheler, L. Mihalkova, and L. Getoor. Probabilistic Similarity Logic. In UAI,
2010.

B. Buchanan and G. Sutherland. Heuristic Dendral: A Program for Generating Explana-
tory Hypotheses in Organic Chemistry. Technical report, Dept Of Computer Science,
Stanford University, California, 1968.

B. G. Buchanan and E. A. Feigenbaum. Dendral and Meta-Dendral: Their Applications
Dimension. Artificial intelligence, 11(1):5–24, 1978.

B. G. Buchanan and E. H. Shortliffe. Rule-Based Expert Systems. Addison-Wesley, 1984.

W. Buntine. Theory Refinement on Bayesian Networks. In UAI, 1991.

158

http://xmlns.com/foaf/spec/20100809.html
http://xmlns.com/foaf/spec/20100809.html

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, and T. M. Mitchell. To-
ward an Architecture for Never-Ending Language Learning. In AAAI, 2010a.

A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr, and T. M. Mitchell. Coupled
Semi-Supervised Learning for Information Extraction. In Proceedings of the third ACM
international conference on Web search and data mining, pages 101–110. ACM, 2010b.

H. Chan and A. Darwiche. Sensitivity Analysis in Markov Networks. In IJCAI, 2005.

H. Chan and A. Darwiche. On the Robustness of Most Probable Explanations. In UAI,
2006.

A. Chechetka and C. Guestrin. Focused Belief Propagation for Query-Specific Inference.
In AISTATS, pages 89–96, 2010.

J. Christensen, S. Soderland, and O. Etzioni. An Analysis of Open Information Extraction
Based on Semantic Role Labeling. In Proceedings of the sixth international conference
on Knowledge capture, pages 113–120. ACM, 2011.

W. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of String Matching Tasks for
Names and Addresses. In IJCAI Workshop on Information Integration on the Web,
2003.

M. Collins and T. Koo. Discriminative reranking for natural language parsing. Computa-
tional Linguistics, 31(1):25–70, 2005.

M. Collins and Y. Singer. Unsupervised Models for Named Entity Classification. In
EMNLP, 1999.

H. Daumé III, J. Langford, and D. Marcu. Search-Based Structure Prediction. Machine
Learning Journal, 2009.

I. Davis, R. Newman, and B. D’Arcus. Expression of Core FRBR Concepts in RDF,
2005. see http://vocab.org/frbr/core.html.

M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al. Generating typed dependency
parses from phrase structure parses. In Proceedings of LREC, volume 6, pages 449–
454, 2006.

R. de Salvo Braz, S. Natarajan, H. Bui, J. Shavlik, and S. Russell. Anytime Lifted Belief
Propagation. In SRL, volume 9, 2009.

S. Decker, S. Melnik, F. Van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann,
and I. Horrocks. The Semantic Web: The Roles of XML and RDF. Internet Computing,
4(5):63–73, 2000.

S. Dixon and K. Jacobson. LinkedBrainz - A project to provide MusicBrainz NGS as
Linked Data. see http://linkedbrainz.c4dmpresents.org/.

159

http://vocab.org/frbr/core.html
http://linkedbrainz.c4dmpresents.org/

X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,
and W. Zhang. Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge
Fusion. In Proceedings of the 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 601–610. ACM, 2014a.

X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and W. Zhang. From
Data Fusion to Knowledge Fusion. Proceedings of the VLDB Endowment, 7(10):881–
892, 2014b.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis: prob-
abilistic models of proteins and nucleic acids. Cambridge university press, 1998.

C. Elkan and A. Monge. The field matching problem: Algorithms and applications.
In Proc. of the Second International Conference on Knowledge Discovery and Data
Mining, AAAI Press, 1996.

O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open Information Extraction from
the Web. Communications of the ACM, 51(12):68–74, 2008.

O. Etzioni, A. Fader, J. Christensen, S. Soderland, and Mausam. Open Information Ex-
traction: the Second Generation. In IJCAI, 2011.

A. Fader, S. Soderland, and O. Etzioni. Identifying Relations for Open Information Ex-
traction. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 1535–1545. Association for Computational Linguistics, 2011.

M. Fan, D. Zhao, Q. Zhou, Z. Liu, T. F. Zheng, and E. Y. Chang. Distant Supervision
for Relation Extraction with Matrix Completion. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, volume 1, pages 839–849,
2014.

E. A. Feigenbaum, B. G. Buchanan, and J. Lederberg. On Generality and Problem Solv-
ing: A Case Study Using the Dendral Program. Technical report, Department of Com-
puter Science, Stanford University, California, 1970.

I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American
Statistical Association, 64(328):1183–1210, 1969.

S. Fine, Y. Singer, and N. Tishby. The Hierarchical Hidden Markov Model: Analysis and
Applications. Machine Learning, 32(1):41–62, 1998.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian journal of
Mathematics, 8(3):399–404, 1956.

N. Friedman and M. Goldszmidt. Sequential Update of Bayesian Network Structure. In
UAI, 1997.

160

P. Gamallo, M. Garcia, and S. Fernández-Lanza. Dependency-Based Open Informa-
tion Extraction. In Proceedings of the Joint Workshop on Unsupervised and Semi-
Supervised Learning in NLP, pages 10–18. Association for Computational Linguistics,
2012.

P. Gardenfors, editor. Belief Revision. Cambridge University Press, New York, NY, USA,
1992.

A. Globerson and T. Jaakkola. Fixing Max-Product: Convergent Message Passing Algo-
rithms for MAP LP-Relaxations. In NIPS, 2007.

J. Golbeck and M. Rothstein. Linking Social Networks on the Web with FOAF: A Se-
mantic Web Case Study. In AAAI, volume 8, pages 1138–1143, 2008.

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A Constant Time Collab-
orative Filtering Algorithm. Information Retrieval, 4(2):133–151, 2001.

P. J. Hayes. In Defense of Logic. In Proceedings of the 5th International Joint Confer-
ence on Artificial Intelligence - Volume 1, IJCAI’77, pages 559–565, San Francisco,
CA, USA, 1977. Morgan Kaufmann Publishers Inc. URL http://dl.acm.org/
citation.cfm?id=1624435.1624559.

P. Hitzler, M. Krotzsch, and S. Rudolph. Knowledge Representation for the Semantic
Web. KI, 2009.

I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive Description
Logics. In Logic for Programming and Automated Reasoning, pages 161–180. Springer
Berlin Heidelberg, 1999.

I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From {SHIQ} and {RDF} to
Owl: The Making of a Web Ontology Language. Web Semantics: Science, Services
and Agents on the World Wide Web, 1(1):7 – 26, 2003.

M. A. Jaro. Probabilistic linkage of large public health data files. Statistics in medicine,
14(5-7):491–498, 1995.

S. Jiang, D. Lowd, and D. Dou. Learning to Refine an Automatically Extracted Knowl-
edge Base Using Markov Logic. In ICDM, 2012.

D. R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the
ACM (JACM), 43(4):601–640, 1996.

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1), 1998.

G. Kasneci, M. Ramanath, F. Suchanek, and G. Weikum. The Yago-Naga Approach to
Knowledge Discovery. ACM SIGMOD Record, 37(4):41–47, 2009.

A. Kimmig, S. H. Bach, M. Broecheler, B. Huang, and L. Getoor. A Short Introduction
to Probabilistic Soft Logic. In NIPS Workshop on Probabilistic Programming, 2012.

161

http://dl.acm.org/citation.cfm?id=1624435.1624559
http://dl.acm.org/citation.cfm?id=1624435.1624559

D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computational Linguistics-Volume 1, pages
423–430. Association for Computational Linguistics, 2003.

G. Kobilarov, T. Scott, Y. Raimond, S. Oliver, C. Sizemore, M. Smethurst, C. Bizer, and
R. Lee. Media Meets Semantic Web–How The BBC uses DBpedia and Linked Data to
Make Connections. In ESWC, 2009.

D. Koller and N. Friedman. Probabilistic Graphical Models. MIT Press, 2009.

S. Krause, H. Li, H. Uszkoreit, and F. Xu. Large-Scale Learning of Relation-Extraction
Rules with Distant Supervision from the Web. International Semantic Web Conference,
pages 263–278, 2012.

M. Krötzsch, F. Simancik, and I. Horrocks. Description Logics. Intelligent Systems, 29
(1):12–19, 2014.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random Fields: Proba-
bilistic Models for Segmenting and Labeling Sequence Data. In ICML, 2001.

K. Laskey. Sensitivity Analysis for Probability Assessments in Bayesian Networks. In
UAI, 1993.

D. Lenat and R. V. Guha. Cyc: A Midterm Report. AI magazine, 11(3):32, 1990.

D. B. Lenat. Cyc: A Large-Scale Investment in Knowledge Infrastructure. Communica-
tions of the ACM, 38(11):33–38, 1995.

D. B. Lenat, M. Prakash, and M. Shepherd. Cyc: Using Common Sense Knowledge to
Overcome Brittleness and Knowledge Acquisition Bottlenecks. AI magazine, 6(4):65,
1985.

W. Li, P. van Beek, and P. Poupart. Performing Incremental Bayesian Inference by Dy-
namic Model Counting. In AAAI, 2006.

B. London, B. Huang, B. Taskar, and L. Getoor. Collective Stability in Structured Predic-
tion: Generalization from One Example. In ICML, 2013.

B. London, B. Huang, B. Taskar, and L. Getoor. PAC-Bayesian Collective Stability. In
AIStats, 2014.

L. Màrquez, X. Carreras, K. C. Litkowski, and S. Stevenson. Semantic role labeling: an
introduction to the special issue. Computational linguistics, 34(2):145–159, 2008.

Mausam, M. D. Schmitz, R. E. Bart, S. Soderland, and O. Etzioni. Open Language
Learning for Information Extraction. In EMNLP, 2012.

K. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, University of California, Berkeley, 2002.

162

D. Nadeau and S. Sekine. A Survey of Named Entity Recognition and Classification.
Lingvisticae Investigationes, 30(1):3–26, 2007.

N. Nakashole, M. Theobald, and G. Weikum. Scalable Knowledge Harvesting with High
Precision and High Recall. In Proceedings of the fourth ACM International Conference
on Web Search and Data Mining, pages 227–236. ACM, 2011.

G. M. Namata, S. Kok, and L. Getoor. Collective Graph Identification. In KDD, 2011.

A. Nath and P. Domingos. Efficient Belief Propagation for Utility Maximization and
Repeated Inference. In AAAI, 2010.

G. Navarro. A Guided Tour to Approximate String Matching. ACM Comput. Surv., 33
(1):31–88, Mar. 2001. ISSN 0360-0300. doi: 10.1145/375360.375365. URL http:
//doi.acm.org/10.1145/375360.375365.

A. Newell, J. C. Shaw, and H. A. Simon. Report on a General Problem-Solving Program.
In IFIP Congress, pages 256–264, 1959.

T.-V. T. Nguyen and A. Moschitti. End-to-End Relation Extraction Using Distant Super-
vision from External Semantic Repositories. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies:
short papers-Volume 2, pages 277–282. Association for Computational Linguistics,
2011.

M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning on
multi-relational data. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 809–816, 2011.

M. Nickel, X. Jiang, and V. Tresp. Reducing the Rank in Relational Factorization Models
by Including Observable Patterns. Advances in Neural Information Processing Systems,
pages 1179–1187, 2014.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A Review of Relational Machine
Learning for Knowledge Graphs: From Multi-Relational Link Prediction to Automated
Knowledge Graph Construction. arXiv preprint arXiv:1503.00759, 2015.

N. J. Nilsson. Principles of Artificial Intelligence. Springer Science & Business Media,
1982.

N. J. Nilsson. Logic and Artificial Intelligence. Artificial Intelligence, 47(1):31–56, 1991.

F. Niu, C. Zhang, C. Ré, and J. Shavlik. Elementary: Large-Scale Knowledge-Base
Construction Via Machine Learning and Statistical Inference. International Journal on
Semantic Web and Information Systems, 8(3):42–73, 2012a.

F. Niu, C. Zhang, C. Ré, and J. W. Shavlik. DeepDive: Web-Scale Knowledge-Base
Construction Using Statistical Learning and Inference. VLDS, 12:25–28, 2012b.

163

http://doi.acm.org/10.1145/375360.375365
http://doi.acm.org/10.1145/375360.375365

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Reason-
ing. Morgan Kaufmann Publishers, 1988.

A. Platanios, A. Blum, and T. M. Mitchell. Estimating accuracy from unlabeled data. In
In Proceedings of UAI, 2014.

J. Pujara, H. Miao, and L. Getoor. Joint Judgments with a Budget: Strategies for Re-
ducing the Cost of Inference. In ICML Workshop on Machine Learning with Test-Time
Budgets, 2013a.

J. Pujara, H. Miao, L. Getoor, and W. Cohen. Ontology-Aware Partitioning for Knowledge
Graph Identification. In CIKM Workshop on Automatic Knowledge Base Construction,
2013b.

J. Pujara, H. Miao, L. Getoor, and W. Cohen. Knowledge Graph Identification. In ISWC,
2013c.

J. Pujara, K. Murphy, X. L. Dong, and C. Janssen. Probabilistic Models for Collective
Entity Resolution Between Knowledge Graphs. In Bay Area Machine Learning Sym-
posium, 2014.

J. Pujara, B. London, and L. Getoor. Budgeted Online Collective Inference. In Uncer-
tainty in Artificial Intelligence, 2015a.

J. Pujara, H. Miao, L. Getoor, and W. Cohen. Using Semantics & Statistics to Turn Data
into Knowledge. AI Magazine, 36(1):65–74, 2015b.

Y. Raimond, S. Abdallah, and M. Sandler. The Music Ontology. In International Confer-
ence on Music Information Retrieval, 2007.

A. L. Rector. Modularisation of domain ontologies implemented in description logics and
related formalisms including OWL. In Proceedings of the 2nd International Confer-
ence on Knowledge Capture, pages 121–128. ACM, 2003.

M. Richardson and P. Domingos. Markov Logic Networks. Machine Learning, 62(1-2),
2006.

B. Roth, T. Barth, M. Wiegand, and D. Klakow. A Survey of Noise Reduction Methods for
Distant Supervision. In Proceedings of the 2013 Workshop on Automated Knowledge
Base Construction, pages 73–78. ACM, 2013.

S. Rudolph. Foundations of Description Logics. In Reasoning Web: Semantic Technolo-
gies for the Web of Data, pages 76–136. Springer Berlin Heidelberg, 2011.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
1995.

S. Sarawagi. Information Extraction. Foundations and Trends in Databases, 1(3):261–
377, Mar. 2008. ISSN 1931-7883. doi: 10.1561/1900000003. URL http://dx.
doi.org/10.1561/1900000003.

164

http://dx.doi.org/10.1561/1900000003
http://dx.doi.org/10.1561/1900000003

N. Shadbolt, W. Hall, and T. Berners-Lee. The Semantic Web Revisited. Intelligent
Systems, 21(3):96–101, 2006.

E. H. Shortliffe. A Rule-Based Computer Program for Advising Physicians regarding
Antimicrobial Therapy Selection. In Proceedings of the 1974 annual ACM conference,
volume 2, pages 739–739. ACM, 1974.

E. H. Shortliffe. Mycin: Computer-Based Medical Consultations. Elsevier, New York,
1976.

B. Smith, W. Ceusters, B. Klagges, J. Köhler, A. Kumar, J. Lomax, C. Mungall,
F. Neuhaus, A. L. Rector, and C. Rosse. Relations in biomedical ontologies. Genome
biology, 6(5):R46, 2005.

R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning with Neural Tensor Networks
for Knowledge Base Completion. In Advances in Neural Information Processing Sys-
tems, 2013.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowledge. In
Proceedings of the 16th international conference on World Wide Web, pages 697–706.
ACM, 2007.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Large Ontology from Wikipedia
and Wordnet. Web Semantics: Science, Services and Agents on the World Wide Web, 6
(3):203–217, 2008.

O. Sümer, U. Acar, A. Ihler, and R. Mettu. Adaptive Exact Inference in Graphical Models.
JMLR, 12:3147–3186, 2011.

M. Surdeanu, D. McClosky, J. Tibshirani, J. Bauer, A. X. Chang, V. I. Spitkovsky, and
C. D. Manning. A Simple Distant Supervision Approach for the Tac-Kbp Slot Filling
Task. In Proceedings of the Text Analysis Conference Workshop, 2010.

S. Takamatsu, I. Sato, and H. Nakagawa. Reducing Wrong Labels in Distant Supervision
for Relation Extraction. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics, volume 1, pages 721–729. Association for Computa-
tional Linguistics, 2012.

N. Tandon, G. de Melo, F. Suchanek, and G. Weikum. Webchild: Harvesting and Orga-
nizing Commonsense Knowledge from the Web. In Proceedings of the 7th ACM Inter-
national Conference on Web Search and Data Mining, pages 523–532. ACM, 2014a.

N. Tandon, G. de Melo, and G. Weikum. Acquiring Comparative Commonsense Knowl-
edge from the Web. In Twenty-Eighth AAAI Conference on Artificial Intelligence, pages
166–172. AAAI Press, 2014b.

B. Taskar, C. Guestrin, and D. Koller. Max-Margin Markov Networks. In NIPS, 2003.

165

P. Thomas, I. Solt, R. Klinger, and U. Leser. Learning Protein-Protein Interaction Ex-
traction Using Distant Supervision. In Workshop on Robust Unsupervised and Semi-
Supervised Methods in Natural Language Processing, pages 34–41, 2011.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech tag-
ging with a cyclic dependency network. In Proceedings of the 2003 Conference of
the North American Chapter of the Association for Computational Linguistics on Hu-
man Language Technology-Volume 1, pages 173–180. Association for Computational
Linguistics, 2003.

E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support Vector Machine Learn-
ing for Interdependent and Structured Output Spaces. In ICML, 2004.

F. van Harmelen, F. van Harmelen, V. Lifschitz, and B. Porter. Handbook of Knowl-
edge Representation. Elsevier Science, San Diego, USA, 2007. ISBN 0444522115,
9780444522115.

C. Wagner. Breaking the Knowledge Acquisition Bottleneck Through Conversational
Knowledge Management. Information Resources Management Journal, 19(1):70–83,
Jan. 2006. ISSN 1040-1628. doi: 10.4018/irmj.2006010104. URL http://dx.
doi.org/10.4018/irmj.2006010104.

R. A. Wagner and M. J. Fischer. The String-to-String Correction Problem. J. ACM,
21(1):168–173, Jan. 1974. ISSN 0004-5411. doi: 10.1145/321796.321811. URL
http://doi.acm.org/10.1145/321796.321811.

M. Wainwright. Estimating the “Wrong” Graphical Model: Benefits in the Computation-
Limited Setting. JMLR, 7:1829–1859, 2006.

W. Wang, R. Besançon, O. Ferret, and B. Grau. Filtering and Clustering Relations for Un-
supervised Information Extraction in Open Domain. In Proceedings of the 20th ACM
international conference on Information and Knowledge Management, pages 1405–
1414. ACM, 2011.

W. Y. Wang, K. Mazaitis, and W. W. Cohen. ProPPR: Efficient First-Order Probabilistic
Logic Programming for Structure Discovery, Parameter Learning, and Scalable Infer-
ence. In Proceedings of the AAAI 2014 Workshop on Statistical Relational AI, 2014.

W. Y. Wang, K. Mazaitis, N. Lao, and W. W. Cohen. Efficient Inference and Learning in
a Large Knowledge Base. Machine Learning, pages 1–26, 2015.

D. S. Weld, F. Wu, E. Adar, S. Amershi, J. Fogarty, R. Hoffmann, K. Patel, and M. Skin-
ner. Intelligence in Wikipedia. In AAAI, volume 8, pages 1609–1614, 2008.

D. C. Wimalasuriya and D. Dou. Ontology-based Information Extraction: An Introduc-
tion and a Survey of Current Approaches. J. Information Science, 36(3), 2010.

166

http://dx.doi.org/10.4018/irmj.2006010104
http://dx.doi.org/10.4018/irmj.2006010104
http://doi.acm.org/10.1145/321796.321811

W. E. Winkler. The state of record linkage and current research problems. In Statistical
Research Division, US Census Bureau. Citeseer, 1999.

T. Winograd. Understanding Natural Language. Cognitive psychology, 3(1):1–191, 1972.

L. Yao, S. Riedel, and A. McCallum. Probabilistic Databases of Universal Schema. In
Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and
Web-scale Knowledge Extraction, pages 116–121. Association for Computational Lin-
guistics, 2012.

L. Yao, S. Riedel, and A. McCallum. Universal Schema for Entity Type Prediction. In
Proceedings of the 2013 Workshop on Automated Knowledge Base Construction, pages
79–84. ACM, 2013.

J. Zhu, Z. Nie, X. Liu, B. Zhang, and J.-R. Wen. Statsnowball: A Statistical Approach to
Extracting Entity Relationships. In Proceedings of the 18th International Conference
on World Wide Web, pages 101–110. ACM, 2009.

167

	Introduction
	Opportunities
	Challenges
	Approach and Contributions

	Related Work
	The Quest for Knowledge in AI
	Knowledge Representation and Reasoning
	Semantic Web: Ontologies and Tools
	Information and Knowledge Extraction
	Probabilistic Graphical Models and Structured Prediction
	Contemporary Approaches to Knowledge Base Construction
	Streaming and Online Inference

	Problem Formulation for Knowledge Graph Identification
	Knowledge Graphs
	Common Errors in Information Extraction
	Entity Ambiguity
	Attribute Errors
	Relation Extraction Errors

	Graph Identification
	Adapting Graph Identification to Knowledge Graphs

	Modeling Knowledge Graph Identification
	Background: PSL for Knowledge Graphs
	Model for Knowledge Graph Identification
	Representing Uncertain Extractions
	Entity Resolution
	Enforcing Ontological Constraints

	Implementing Knowledge Graph Identification with PSL
	Experimental Evaluation
	Datasets and Experimental Setup
	Learning Model Weights from Training Data
	Open-World vs Closed-World Evaluation Setting
	Results for Closed-World Settings
	Results for Model Ablation Study
	Results for Open-World Settings

	Discussion

	Entity Resolution for Knowledge Graphs
	Problem Definition
	Ambiguity In Candidate Extractions
	Incorporating New Extractions Into a Knowledge Graph
	Combining Information From Multiple Knowledge Graphs

	Approach
	Local and Collective Knowledge Graph Features
	Knowledge Graph Models at Different Granularity

	Modeling Knowledge Graph Entity Resolution
	Basic Features
	New Entity Features
	Abstract Knowledge Graph Features
	Domain-Specific Knowledge Graph Features
	Synthesis

	Evaluation
	Discussion

	Scaling Knowledge Graph Identification
	Scalability Analysis of Knowledge Graph Identification
	Scaling Knowledge Graph Identification with HL-MRFs
	Scalability Challenges for Knowledge Graph Identification
	Partitioning Knowledge Graphs for Distributed Processing
	Scalability via Ontological Partitioning

	Evaluation
	Comparison of Partitioning Techniques
	Assessing the Impact of Partition Size

	Discussion

	Online Collective Inference
	Preliminaries
	Inference Regret
	Regret Bounds for Strongly Convex Inference
	The Lipschitz Constant of the Features

	Algorithms for Online Inference Activation
	Background: ADMM Optimization
	ADMM Features
	Activation Algorithms

	Evaluation
	Online Collective Classification
	Collaborative Filtering

	Discussion

	Conclusion and Future Work
	Future Work

	Sample PSL Program for Knowledge Graph Identification
	Additional Results for Knowledge Graph Identification
	Baseline Results
	Results Excluding Extractor Source Information
	Results Excluding Entity Resolution Information
	Results Excluding Ontological Information
	Results for the Knowledge Graph Identification Model
	Results for the Open-World Knowledge Graph Identification Model

	Bibliography

