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Abstract
The task of knowledge graph construction presents a con-
founding challenge for statistical relational models. While
the uncertainty of extractions from NLP tools and the on-
tological structure of knowledge are a perfect match for the
strengths of statistical relational techniques, the vast and con-
tinually growing evidence from which knowledge graphs are
constructed can make such models prohibitively expensive.
We address this challenge by presenting two lines of research
that provide a foundation for online knowledge graph con-
struction. The first is work on knowledge graph identifica-
tion, a scalable probabilistic model for combining statisti-
cal features from uncertain extractions and ontological con-
straints to efficiently construct a knowledge graph. The sec-
ond is the necessary theory and accompanying algorithms for
partially updating an inferred knowledge graph. We illustrate
how combining these components presents the opportunity to
apply sophisticated statistical relational models to complex
domains, such as knowledge graph construction, without sac-
rificing quality or efficiency.

The Challenge of Lifelong Learning
Statistical relational models have a key strength: they cap-
ture and represent the myriad relationships found in real-
world data while incorporating probabilistic semantics to
quantify uncertainty. Unfortunately, the sophisticated mod-
els our community builds are accompanied by a hefty price
tag. For many practical applications, models will contain
millions of statistical dependencies, making inference slow
or even intractable. This obstacle is compounded by “life-
long learning” settings where new evidence continually ar-
rives – if repeating inference is costly, the resulting infer-
ences can quickly become outdated and inaccurate.

One task that fits the paradigm of lifelong learning
is knowledge graph construction. Knowledge graphs are
structured knowledge bases where nodes represent entities
and edges represent relationships between these entities.
A growing number of projects have built vast knowledge
graphs from Web data sources, including (among many oth-
ers) YAGO (Suchanek, Kasneci, and Weikum 2007), OLLIE
(Etzioni et al. 2008), DeepDive (Niu et al. 2012), and the
Knowledge Vault (Dong et al. 2014). As new information
is added to the Web – whether through news stories, user
postings, or site updates – these knowledge bases must be
updated to reflect the new information.

As a case study, we consider a project that explicitly ap-
proaches knowledge graph construction as a lifelong learn-
ing task: NELL (Carlson et al. 2010), the Never-ending
Language Learner. On a roughly daily basis, NELL em-
ploys a collection of information extraction techniques to
discover candidate facts to add to its knowledge base. Us-
ing patterns of agreement and disagreement between extrac-
tion techniques, NELL selectively promotes candidate ex-
tractions that are likely to be true and uses these promotions
as a feedback signal to train each of the extractors. Crucial to
the success of NELL is deciding which candidate extractions
are true using the rich dependencies between extracted facts.
However, the tens to hundreds of millions of facts in NELL’s
knowledge base make running inference to construct a com-
plete knowledge graph impractical. Instead, the problem of
promoting instances in NELL requires efficient updates to
the knowledge graph using new extractions to bolster infer-
ences on uncertain facts.

In this paper, we summarize two existing lines of work
that form the foundation for the online construction of mas-
sive knowledge graphs. The first component is knowledge
graph identification (Pujara et al. 2013), a statistical rela-
tional model that combines ontological constraints and sta-
tistical features from uncertain extractions to infer a com-
plete knowledge graph. The second component is recent
work on online collective inference (Pujara, London, and
Getoor 2015) which offers a theoretical bound on inference
regret when making partial inference updates and algorithms
for selectively updating the MAP state while maintaining
low error. Finally, we illustrate how combining these two
components can be applied to the large-scale lifelong learn-
ing problem of knowledge graph construction.

Background: Knowledge Graph Identification
In this section we provide background on knowledge graph
identification, the task of transforming a noisy extraction
graph to a consistent knowledge graph. Candidate facts from
an information extraction system can be represented as an
extraction graph where entities are nodes, categories are la-
bels associated with each node, and relations are directed
edges between the nodes. Unfortunately, the output from an
information extraction system is often incorrect; the graph
constructed from it has spurious and missing nodes and
edges, and missing or inaccurate node labels. Our approach,
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Figure 1: An illustration of the example showing how
knowledge graph identification can resolve conflicting infor-
mation in a knowledge graph. Entities are shown in rectan-
gles, dotted lines represent uncertain information, solid lines
show ontological constraints and double lines represent co-
referent entities found with entity resolution.

knowledge graph identification (KGI) (Pujara et al. 2013),
performs collective classification, link prediction, and entity
resolution in the presence of rich ontological information
and multiple sources of uncertain information, ultimately
producing a better knowledge graph.

Unlike earlier work on graph identification (Namata, Kok,
and Getoor 2011) we use a very different probabilistic
framework, probabilistic soft logic PSL (Bach et al. 2015).
PSL allows us to apply global constraints instead of rely-
ing only on local features. PSL models are expressed us-
ing a set of universally-quantified logical rules that, when
combined with data such as the noisy extractions and on-
tological information, define a probability distribution over
possible knowledge graphs. In the case of KGI, we intro-
duce rules to relate uncertain extractions to the true relations
and labels in the knowledge graph, pool these facts across
co-referent entities, and constrain relations and labels with
rules that use ontological information such as domain and
range constraints, mutual exclusion relationships. We ex-
plain how these components of KGI map to PSL rules, mo-
tivating these rules with examples of challenges found the
Never-Ending Language Learner (NELL).

Representation of Uncertain Extractions
NELL produces candidate extractions from a web
corpus which often contains noise. Candidate extrac-
tions from the NELL corpus include labels such as
bird(kyrgyzstan) and country(kyrghyzstan) as
well as relations such as locatedIn(kyrghyzstan,
Russia), locatedIn(kyrgyz republic,
Asia), locatedIn(kyrghyzstan, US), and
locatedIn(kyrgyzstan, Kazakhstan). These
extractions can contain mistakes that include variations in
spelling and inconsistencies in relationships, and NELL
assigns confidence values to each extraction.

In PSL, we represent these candidate extractions
with predicates CANDLBL and CANDREL, e.g. CAN-
DLBL(kyrgyzstan, bird) and CANDREL(kyrgyz
republic, Asia, locatedIn). NELL has multiple ex-
tractors that generate candidates, and we can use different
predicates for each extractor to capture the confidence of that
extractor. For a given extractor T, we introduce predicates
CANDRELT and CANDLBLT to represent the candidates
extracted by T. We relate these candidates to the facts that

we wish to infer, LBL and REL, using the following rules:
CANDRELT (E1, E2, R)

wCR−T⇒ REL(E1, E2, R)

CANDLBLT (E,L)
wCL−T⇒ LBL(E,L)

PSL uses soft logic, so we can represent noisy extractions
by translating confidences into real-valued truth assignments
in the [0, 1] range. For example, if NELL extracts the re-
lation locatedIn(kyrgyz republic,Asia) and as-
signs it a confidence value of 0.9, we would assign the atom
CANDREL(kyrgyzstan,Asia,locatedIn) a soft-truth
value of 0.9. Similarly, our output values for unknown facts
are in the [0, 1] range allow us to trade-off precision and re-
call by using a truth threshold. By learning the weights of
these rules, wCLT

and wCRT
, our model combines multiple

sources of information to label nodes and predict links.

Reasoning About Co-Referent Entities
While the previous PSL rules provide the building blocks
of predicting links and labels using uncertain information,
KGI employs entity resolution to pool information across
co-referent entities. In the example above, many different
forms for the country Kyrgystan appear: kyrgyzstan ,
kyrghyzstan , and kyrgyz republic. A key com-
ponent of KGI is identifying possibly co-referent entities
and determining the similarity of these entities. We use the
SAMEENT predicate to capture the similarity of two enti-
ties. While any similarity metric can be used, we compute
the similarity of entities using a process of mapping each
entity to the YAGO knowledge base (Suchanek, Kasneci,
and Weikum 2007), extracting a set of Wikipedia articles for
each entity and then computing the Jaccard index of possibly
co-referent entities. We incorporate this information about
co-referent entities by constraining the labels and relations
of these entities through PSL rules:
SAMEENT(E1, E2) ∧ LBL(E1, L)

wEL⇒ LBL(E2, L)

SAMEENT(E1, E2) ∧ REL(E1, E,R)
wER⇒ REL(E2, E,R)

SAMEENT(E1, E2) ∧ REL(E,E1, R)
wER⇒ REL(E,E2, R)

These rules define an equivalence class of entities, such that
all entities related by the SAMEENT predicate must have
the same labels and relations. The soft-truth value of the
SAMEENT, derived from our similarity function, mediates
the strength of these rules. When two entities are very simi-
lar, they will have a high truth value for SAMEENT, so any
label assigned to the first entity will also be assigned to the
second entity. On the other hand, if the similarity score for
two entities is low, the truth values of their respective labels
and relations will not be strongly constrained.

Incorporating Ontological Information
Although entity resolution allows us to relate extractions
that refer to the same entity, knowledge graphs can em-
ploy ontological information to specify rich relationships
between many facts. Our ontological constraints are based
on the logical formulation proposed in (Jiang, Lowd, and
Dou 2012). Each type of ontological relation is represented
as a predicate, and these predicates represent ontological
knowledge of the relationships between labels and rela-
tions. For example, the constraints DOM(hasCapital,



country) and RNG(hasCapital, city) specify that
the relation hasCapital is a mapping from entities with
label country to entities with label city. The constraint
MUT(country, bird) specifies that the labels country
and bird are mutually exclusive, so that an entity cannot
have both the labels country and bird. We similarly use
constraints for subsumption of labels (SUB) and inversely-
related functions (INV). To use this ontological knowledge,
we introduce rules relating each ontological relation to the
predicates representing our knowledge graph. We specify
seven types of ontological constraints in our experiments:
DOM(R,L) ∧ REL(E1, E2, R)

wO⇒ LBL(E1, L)

RNG(R,L) ∧ REL(E1, E2, R)
wO⇒ LBL(E2, L)

INV(R,S) ∧ REL(E1, E2, R)
wO⇒ REL(E2, E1, S)

SUB(L,P ) ∧ LBL(E,L)
wO⇒ LBL(E,P )

RSUB(R,S) ∧ REL(E1, E2, R)
wO⇒ REL(E1, E2, S)

MUT(L1, L2) ∧ LBL(E,L1)
wO⇒ ¬LBL(E,L2)

RMUT(R,S) ∧ REL(E1, E2, R)
wO⇒ ¬REL(E1, E2, S)

Putting It All Together
Inferring a knowledge graph becomes challenging as we
consider the many interactions between the uncertain ex-
tractions that we encounter in KGI (Figure 1). For example,
NELL’s ontology includes the constraint that the attributes
bird and country are mutually exclusive. While extrac-
tor confidences may not be able to resolve which of these
two labels is more likely to apply to kyrgyzstan, reason-
ing collectively using entity resolution and ontological con-
straints can provide a solution. For example, NELL is highly
confident that kyrgyz republic has a capital city,
Bishkek. The NELL ontology specifies that the domain of
the relation hasCapital has label country. Entity res-
olution allows us to infer that kyrgyz republic refers
to the same entity as kyrgyzstan. Deciding whether Kyr-
gyzstan is a bird or a country now involves a prediction
where we include the confidence values of the correspond-
ing bird and country facts from co-referent entities,
as well as collective features from ontological constraints of
these co-referent entities, such as the confidence values of
the hasCapital relations.

To accomplish this collective reasoning, we use PSL
to define a joint probability distribution over knowledge
graphs. The universally-quantified rules described are a PSL
model and provide the basis for defining this probability dis-
tribution. In a PSL program, Π, this model is grounded by
substituting values from NELL’s noisy extractions into the
rule template. For example, the rule:

DOM(R,L) ∧ REL(E1, E2, R)
wO⇒ LBL(E1, L)

can be grounded by substituting atoms from NELL,
DOM(hasCapital, country), REL(kyrgyzstan,
Bishkek, hasCapital), and LBL(kyrgyzstan,
country), into the rule template. We refer to the collection
of ground rules in the program as G.

Unlike Boolean logic where each grounding would have
a binary truth value, our choice of soft logic requires a dif-

ferent definition of truth value. We refer to an assignment of
soft-truth values to atoms as an interpretation, which, in this
case, corresponds to a possible knowledge graph, and use the
Lukasiewicz t-norm and co-norm to determine the truth val-
ues of logical formulas under an interpretation. This t-norm
defines a relaxation of logical connectives as follows:

p ∧ q = max(0, p+ q − 1)
p ∨ q = min(1, p+ q)

¬p = 1− p
With this definition, for each possible knowledge graph, I ,
we can assign a truth value Tr(I) to every grounding g ∈ G
and define a distance to satisfaction, φr(I) = 1 − Tr(I)
for each grounding. Since PSL rules allow antecedents con-
sisting of conjuncted atoms and consequents with disjuncted
atoms, φr(I) takes the familiar form of the hinge-loss, and
PSL models are an instance of hinge-loss Markov random
fields (Bach et al. 2013).

The probability distribution over knowledge graphs,
PΠ(I) can now be defined using a weighted combination
of the distance to satisfaction of ground rules in the PSL
program:

PΠ(I) =
1

Z
exp

−∑
g∈G

wrφr(I)p


where p ∈ 1, 2 specifies a linear or quadratic combination
and Z is a normalization constant.

Most probable explanation (MPE) inference corresponds
to identifying a graph that maximizes PΠ(G), which can
then be mapped to a set of labels and relations that com-
prises the true knowledge graph. In our work, we choose
a soft-truth threshold and determine the true entities, labels
and relations by using those atoms whose truth value ex-
ceeds the threshold. MPE inference can be formulated as
convex optimization in PSL, and using the alternating direc-
tion method of multipliers (ADMM), which scales linearly
with the number of ground rules in the PSL program. In the
next section, we provide a deeper analysis of ADMM opti-
mization.

Background: Online Collective Inference
In this section, we introduce the concept of inference re-
gret, which is informally defined as the distance between
the MAP state resulting from full inference over all evidence
and the MAP state produced through a partial inference up-
date. We then summarize the inference regret bound in (Pu-
jara, London, and Getoor 2015), which applies for models
with a strongly-convex inference objective, such as the HL-
MRFs used in PSL. The remainder of the section provides an
in-depth analysis of the ADMM optimization algorithm and
a detailed explanation of how features from the optimization
can be used to selectively update the MAP state.

Regret Bound for Online Inference
Fix a model with energy function defined as E(y‖x; ẇ) ,
w · φ(x,y) +

wp

2 ‖y‖
2
2. Suppose we are given evidence,

X = x, from which we make a prediction, Y = y, us-
ing MAP inference. Then, some subset of the unknowns are
revealed. Conditioning on the new evidence, we have two



choices: we can recompute the MAP state of the remain-
ing variables, using full inference; or, we can fix some of
the previous predictions, and only update a certain subset
of the variables. To understand the consequences of fixing
our previous predictions we must answer a basic question:
how much will the partial update differ from the MAP state
resulting from full inference?

We formalize the above question in the following concept.

Definition 1. Fix a budget m ≥ 1. For some subset S ⊂
{1, . . . , n}, such that its complement S , {1, . . . , n} \ S,
has size

∣∣S∣∣ = m, let YS denote the corresponding subset
of the variables, and let YS denote its complement. Assume
there is an operator Γ that concatenates YS and YS in the
correct order. Fix a model, ẇ, and an observation, X = x.
Further, fix an assignment, YS = yS , and let

h(x,yS ; ẇ) , Γ

(
yS , arg min

yS

E (Γ(yS ,yS)‖x; ẇ)

)
denote the new MAP configuration for YS after fixing YS
to yS . We define the inference regret for (x,yS ; ẇ) as

Rn(x,yS ; ẇ) ,
1

n
‖h(x; ẇ)− h(x,yS ; ẇ)‖1 . (1)

Given this definition of regret, we introduce a bound for
strongly-convex inference objectives. Here the L2 prior with
weight wp guarantees strong convexity.

Proposition 1. Fix a model with weights ẇ. Assume there
exists a constant B ∈ [0,∞) such that, for any x, and any
y,y′ that differ at coordinate i,

‖φ(x,y)− φ(x,y′)‖2 ≤ B |yi − y
′
i| . (2)

Then, for any observations x, any budget m ≥ 1, any subset
S ⊂ {1, . . . , n} :

∣∣S∣∣ = m, and any assignments yS , with
ŷ , h(x; ẇ), we have that

Rn(x,yS ; ẇ) ≤

√
1

n

(
3

2
+
B ‖w‖2
wp

)
‖yS − ŷS‖1.

Summarizing the bound, we show that, beyond fixed
model parameters such as the Lipschitz constant (B) and
model weights, inference regret depends on the L1 distance
between the fixed variables (yS ) and their values in full
inference (ŷS ). This conclusion provides a crucial insight:
successfully approximating the MAP state with a partial up-
date requires fixing those variables that change the least. In
the following sections we provide an analysis of the opti-
mization used to find the MAP state and how features from
the optimization algorithm allow us to design activation al-
gorithms which choose which variables to infer.

Alternating Direction Method of Multipliers
(Bach et al. 2012) have shown that applying consensus op-
timization using the Alternating Direction Method of Multi-
pliers (ADMM) (Boyd et al. 2011) provides scalable infer-
ence for HL-MRFs. For clearer exposition, we express the

inference in terms of the set of ground rules, G and rewrite
the energy function as:

E(y‖x; ẇ) ,
∑
g∈G

wgfg(x,y) +
wp

2
‖y‖22

Here, wgfg(x,y) is a weighted potential corresponding to
a single ground rule. ADMM operates by substituting the
global optimization problem with local optimizations for
each potential that use independent copies of the variables.
For each grounding g ∈ G, let yg denote the variables in-
volved in g and ỹg indicate the local copy of those variables.
To reconcile the local optimizations, ADMM introduces a
constraint that local copies agree with the global “consen-
sus” variables for each variable i involved in the grounding;
that is, yg(i) = ỹg(i). This constraint is transformed into an
augmented Lagrangian with penalty parameter ρ > 0 and
Lagrange multipliers αg:

min
ỹg

wg fg(x, ỹg) +
ρ

2

∥∥∥∥ỹg − yg +
1

ρ
αg

∥∥∥∥2
2

, (3)

wherewg and fg are the weight and potential associated with
g. ADMM iteratively alternates optimizing the local poten-
tials, then updating the consensus estimates and associated
Lagrange multipliers.

ỹg ← argminỹg
wg fg(x, ỹg) +

ρ

2

∥∥∥ỹg − yg +
1

ρ
αg

∥∥∥2 ;

y[i]← meang(ỹg[i]) ; αg[i]← αg[i] + ρ(ỹg[i]− yg[i]) .

A key element of this optimization is the interplay of
two components: the weighted potential corresponding to a
grounding and the Lagrangian penalty for deviating from the
consensus estimate. As optimization proceeds, the Lagrange
multipliers are updated to increase the penalty for deviating
from the global consensus. At convergence, a balance ex-
ists between the two components reconciling the local min-
imizer and the aggregate of global potentials.

ADMM Features
The goal of activation is to determine which variables are
most likely to change in a future inference. From the anal-
ysis in the previous section, we can identify several basic
elements for each variable in the model that serve as fea-
tures for an activation algorithm. For each variable, we have
its value at convergence (y(i)), and for each grounding g,
the weight (wg), the value of the potential (fg(x, ỹg)), and
the Lagrange multipliers (αg) measuring the aggregate de-
viation from consensus. We discuss each of these features to
motivate their importance in an activation algorithm.

The value of a variable at convergence can provide a use-
ful signal in certain situations, where a model has clear se-
mantics. For example, the formulation of HL-MRFs often
lends itself to a logical interpretation with binary outcomes,
as in the cases of collective classification of attributes that
are either present or absent. In this setting, assignments in
the vicinity of 1/2 represent uncertainty, and therefore pro-
vide good candidates for activation. While, this feature is
not universal, in cases where the HL-MRF models Boolean
variables it can capture a useful signal.



The weighted potentials of each variable contribute di-
rectly to the probability of the MAP configuration. Since
the log-probability is proportional to the negated energy,
−E, high weights and high potential values decrease the
probability of the assignment. Intuitively, activating those
variables that contribute high weighted potentials provides
the best mechanism for approaching the full inference MAP
state. A complication to this approach is that each weighted
potential can depend on many variables. However, the poten-
tial value is a scalar quantity and there is no general mecha-
nism to apportion the loss to the contributing variables.

In contrast, the Lagrange multipliers provide a granular
perspective on the loss. For each variable in a potential, the
Lagrange multiplier measures the aggregate deviation of that
variable from the global consensus. High Lagrange multipli-
ers indicate a discord between the minimizer of the potential
and the global minimizer. Activating variables with high La-
grange multipliers provides the opportunity to resolve this
discord in future inference using updated evidence, and thus
find a higher-probability configuration. Nonetheless, since
the Lagrange multipliers are artifacts of the previous epoch,
there is the possibility that they might not identify volatile
variables in the current epoch.

Activation Algorithms
From this analysis of the ADMM, we introduce two activa-
tion algorithms for online collective inference, both of which
produce a ranking over all variables. The key difference
between these algorithms is whether they operate indepen-
dently of the updates to the evidence. We differentiate be-
tween “agnostic activation” and “relational activation”. Ag-
nostic activation scores variables at inference time based on
their susceptibility to change in future inferences. In con-
trast, relational activation has access to both the updated set
of evidence and the previous inference state.

Each approach has different advantages. Agnostic acti-
vation runs concurrently with inference, which provides a
performance advantage since the scoring algorithm does not
delay a future run of inference. However, this technique has
slower responsiveness to updated evidence since scores are
only updated after the inference is run. Relational activation
can respond to newly-arrived evidence and choose variables
based on their relationship to the new evidence. Yet, this re-
quires running activation before inference, potentially intro-
ducing a delay in updated inference.

Both activation algorithms output a ranking of the vari-
ables, which requires a scoring function. The scoring func-
tion uses the ADMM features described in the previous sec-
tion. Our first scoring function, VALUE, uses the consensus
value of the variable (y(i)) and measures uncertainty with
the function 1 − |0.5 − y(i)|. The second scoring func-
tion, WLM, combines the potential weight (wg) and La-
grange multipliers (αg(i)). One insight from our analysis
of ADMM is that the magnitudes of the Lagrange multi-
pliers associated with each variable provide a useful signal
for determining activation. We further intuit that the weight
of the associated potential can be used to scale the impor-
tance of the Lagrange multiplier. Thus, for each variable,
we define a set of weighted Lagrange multiplier magnitudes,

Aw(i) , {|wgαg(i)|}. To obtain a single scalar score, we
take the maximum value of Aw(i).

The agnostic activation algorithm sorts the variables by
their associated scores, irrespective of the new evidence.
The RELATIONAL algorithm combines the score with infor-
mation about the new evidence. Using the existing ground
model, the algorithm first identifies all ground potentials that
depend on the new evidence. Then, using these ground po-
tentials as a seed set, the algorithm performs a breadth-first
search of the factor graph and adds the variables involved in
each factor it encounters to the activation order. Traversing
the factor graph can quickly identify many candidate vari-
ables, so we prioritize variables in the frontier using the scor-
ing function.

The ranking output by either agnostic or relational acti-
vation lets us prioritize which variables to activate. Given
a budget for the number or percentage of variables to in-
fer, we activate a corresponding number of variables from
the ranking. The remaining variables are constrained to their
previously inferred values. We selectively ground the model,
including only those rules that involve an activated variable.
Following inference on the ground model, we use the up-
dated optimization state to produce new scores.

When an inactive variable is treated as a constant, it does
not have any associated Lagrange multipliers, and therefore
will not have any features in the next round of inference.
Therefore, instead of treating fixed variables as constants,
we introduce them as constrained variables in the optimiza-
tion. This allows us to still produce features for inactive
variables to capture the discrepancy between the constrained
value and the value of local copies in the groundings of ac-
tivated variables.

Our implementation of the agnostic activation algorithm
is extremely efficient; all necessary features are byproducts
of the inference optimization. Once scores are computed and
the activated atoms are selected, the optimization state can
be discarded to avoid additional resource commitments. In
relational activation, scoring is similarly efficient, but there
is an additional overhead of preserving the ground model
to allow fast traversal of the factor graph. By selectively
grounding the model we replace queries that scan the en-
tire database, potentially many times, with precise queries
that exploit indices for faster performance. Finally, selec-
tively activating atoms produces an optimization objective
with fewer terms, allowing quicker optimization.

Online Inference for KGI
To conclude, we sketch how to combine knowledge graph
identification with our activation algorithms for online in-
ference, and identify open research questions that confront
our ongoing research. While we are unable to include exper-
imental results in this draft, we describe the experiments we
are pursuing and intend to include preliminary results (and
source code) from our experiments in the camera-ready ver-
sion of this paper.

Extending knowledge graph identification to cope with
new extractions, such as those that NELL generates on a
daily basis, is possible using the machinery we have intro-
duced for online inference. The activation algorithms pre-



sented here have shown promise in our prior research. These
algorithms leverage uncertainty and discord during infer-
ence to effectively choose variables to activate in future
rounds of inference. What are the ramifications of these al-
gorithms for knowledge graph identification?

In NELL, uncertainty is often the result of inadequate in-
formation; extractions with little supporting evidence are as-
signed confidence 0.5, making them ideal candidates for the
VALUE algorithm to refine in future inference. Conversely,
high discord, and the correspondingly high Lagrange multi-
pliers, are a likely symptom of strong disagreement between
extractions and ontological constraints such as mutual exclu-
sion. Re-evaluating facts that disagree via the WLM algo-
rithm can help improve the precision of a knowledge graph.
Finally, as new evidence accumulates the greatest opportu-
nity is to infer and correct related facts, such as those ac-
tivated by the RELATIONAL algorithm. Each of these algo-
rithms has a potential strength for online knowledge graph
identification.

We are testing our online inference methods on data from
20 iterations of a new NELL instance. The NELL instance
produces approximately 150K new extractions in each iter-
ation, and the 20th iteration has 3.5M total extractions. In
our previous experience with knowledge graph identifica-
tion, we have observed that the complete knowledge graph
can be three times as large as the extraction graph as a conse-
quence of inferences from ontological constraints. Our goal
is to compare the results of full inference to approximate
inference using the activation strategies detailed here and
demonstrate fast inference with low regret. We are commit-
ted to releasing source code and data for our experiments,
and we anticipate that this problem setting will stimulate the
StaRAI community to pursue challenging lifelong learning
problems.

While we believe applying our online inference methods
to knowledge graph identification will be successful, we also
acknowledge that constructing knowledge graphs confronts
the limits of our theoretical bounds. One limitation of our
existing work is that it makes a closed-world assumption,
providing a valid bound when the inferred variables remain
fixed. In lifelong learning tasks, such as knowledge graph
construction, the variables inferred will naturally grow over
time as new evidence is encountered. Providing bounds for
the performance of online inference in a setting where arbi-
trary variables (and arbitrary statistical dependencies) can
be introduced at any time presents a difficult theoretical
quandary.
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