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Introduction
The web is a vast repository of knowledge, but automati-
cally extracting that knowledge, at scale, has proven to be
a formidable challenge. A number of recent evaluation ef-
forts have focused on automatic knowledge base population
(Ji, Grishman, and Dang 2011; Artiles and Mayfield 2012),
and many well-known broad domain and open information
extraction systems exist, including the Never-Ending Lan-
guage Learning (NELL) project (Carlson et al. 2010), Ope-
nIE (Etzioni et al. 2008), and efforts at Google (Pasca et
al. 2006), which use a variety of techniques to extract new
knowledge, in the form of facts, from the web. These facts
are interrelated, and hence, recently this extracted knowl-
edge has been referred to as a knowledge graph (Singhal
2012). Unfortunately, most web-scale extraction systems do
not take advantage of the rich dependencies found in the
knowledge graph; instead approaches consider extractions
independently, relying on simple heuristics to enforce con-
sistency.

Recent work demonstrates that reasoning jointly is a
promising approach to improving the knowledge graph.
(Jiang, Lowd, and Dou 2012) choose candidate facts for
inclusion in a knowledge base with a joint approach using
Markov Logic Networks (MLNs) (Richardson and Domin-
gos 2006). Jiang et al. provide a straightforward codifica-
tion of ontological relations and candidate facts found in a
knowledge base as rules in first-order logic and use MLNs to
formulate a probabilistic model. However, due to the combi-
natorial explosion of Boolean assignments to random vari-
ables, inference and learning in MLNs pose intractable opti-
mization problems. Jiang et al. limit the candidate facts they
consider, restricting their dataset to a 2-hop neighborhood
around each fact, and use a sampling approach to inference,
estimating marginals using MC-SAT. Despite these approxi-
mations, their work demonstrate the utility of joint reasoning
in comparison to a baseline that considers each fact indepen-
dently.

Our work builds on the foundation of Jiang, Lowd, and
Dou by providing a richer model for knowledge bases and
vastly improving scalability. Our method transforms the
noisy output of an information extraction system, a we de-
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fine the problem of jointly inferring the entities, relations
and attributes comprising a knowledge graph as knowl-
edge graph identification. We leverage dependencies in the
knowledge graph expressed through ontological constraints,
and perform entity resolution allowing us to reason about
co-referent entities. We also take advantage of uncertainty
found in the extracted data, using continuous variables with
values derived from extractor confidence scores.

To support this representation, we use a continuous-
valued Markov random field and use the probabilistic soft
logic (PSL) modeling framework (Broecheler, Mihalkova,
and Getoor 2010). Inference in our model can be formulated
as a convex optimization that scales linearly in the number
of instances (Bach et al. 2012), allowing us to handle mil-
lions of candidate facts. These scalability gains allow us to
evaluate our model on a predefined test set using millions
of extractions in just 10 seconds, while also supporting lazy
inference to produce a broader set of 4M candidates in just 2
hours. In this extended abstract we summarize contributions
from a longer paper presented at ISWC 2013 (Pujara et al.
2013). Our work:

• Defines the knowledge graph identification problem;
• Uses soft-logic values to leverage extractor confidences;
• Formulates knowledge graph inference as convex opti-

mization;
• Evaluates our proposed approach on extractions from

NELL, a large-scale operational knowledge extraction
system;

Knowledge Graph Identification
Our approach to constructing a consistent knowledge base
uses PSL to represent the candidate facts from an informa-
tion extraction system as a knowledge graph where entities
are nodes, categories are labels associated with each node,
and relations are directed edges between the nodes. Informa-
tion extraction systems can extract such candidate facts, and
these extractions can be used to construct a graph. Unfor-
tunately, the output from an information extraction system
is often incorrect; the graph constructed from it has spuri-
ous and missing nodes and edges, and missing or inaccurate
node labels. Our approach to solving this problem builds on
graph identification (Namata, Kok, and Getoor 2011), which
identifies three key tasks: collective classification, link pre-



diction, and entity resolution. Knowledge graph identifica-
tion provides a method for performing these three tasks in
the presence of rich ontological information and multiple
sources of uncertain information.

Unlike earlier work on graph identification, we use a very
different probabilistic framework, PSL, allowing us to incor-
porate extractor confidence values and also support a rich
collection of ontological constraints. PSL models are ex-
pressed using a set of universally-quantified logical rules
which, when combined with the noisy extractions and on-
tological information, define a probability distribution over
possible knowledge graphs. We explain how components of
knowledge graph identification map to PSL rules, motivat-
ing these rules with examples of challenges found in a real-
world information extraction system, the Never-Ending Lan-
guage Learner (NELL) (Carlson et al. 2010).

Representation of Uncertain Extractions

NELL produces candidate extractions from a web cor-
pus, which often contains noise. For example, candidate
extractions from the NELL corpus include labels such as
bird(kyrgyzstan) and country(kyrghyzstan) as
well as relations such as locatedIn(kyrghyzstan,
Russia), locatedIn(kyrgz republic,
Asia), locatedIn(kyrghyzstan, US), and
locatedIn(kyrgyzstan, Kazakhstan). These
extractions can contain many mistakes that include varia-
tions in spelling and inconsistencies in relationships; clearly
some of these candidate extractions are true while others
are false, and NELL assigns confidence values to each
extraction.

In PSL, we represent these candidate extractions
with predicates CANDLBL and CANDREL , eg. CAN-
DLBL(kyrgyzstan, bird) and CANDREL(kyrgz
republic, Asia, locatedIn). In fact, NELL has
multiple extractors that generate candidates, and we can use
different predicates for each extractor. For a given extractor
T, we introduce predicates CANDRELT and CANDLBLT

to represent the candidates extracted by T. We relate these
candidates to the unknown facts that we wish to infer, LBL
and REL using the following rules:

CANDRELT (E1, E2, R)
wCR−T⇒ REL(E1, E2, R)

CANDLBLT (E,L)
wCL−T⇒ LBL(E,L)

Since PSL uses soft logic, we can represent noisy extrac-
tions by translating confidences into real-valued truth as-
signments in the [0, 1] range. For example, if NELL extracts
the relation locatedIn(kyrgz republic, Asia) and
assigns it a confidence value of .9, we would assign the
predicate CANDREL(kyrgyzstan, Asia, locatedIn)
a soft-truth value of .9. Similarly, our output values for un-
known facts are in the [0, 1] range allow us to trade-off pre-
cision and recall by using a truth threshold. By learning the
weights of these rules, wCLT

and wCRT
, our model com-

bines multiple sources of information to label nodes and pre-
dict links.

Reasoning About Co-Referent Entities

While the previous PSL rules provide the building blocks
of predicting links and labels using uncertain information,
knowledge graph identification employs entity resolution to
pool information across co-referent entities. In the example
above, many different variant forms for the country Kyrgys-
tan appear: kyrgyzstan , kyrghyzstan , and kyrgz
republic. A key component of this process is identifying
possibly co-referent entities and determining the similarity
of these entities. We use the SAMEENT predicate to cap-
ture the similarity of two entities. While any similarity met-
ric can be used, we compute the similarity of entities using
a process of mapping each entity to the YAGO knowledge
base(Suchanek, Kasneci, and Weikum 2007), extracting a
set of Wikipedia articles for each entity and then comput-
ing the Jaccard index of possibly co-referent entities. We in-
corporate this information about co-referent entities by con-
straining the labels and relations of these entities through
PSL rules:
SAMEENT(E1, E2)∧̃LBL(E1, L)

wEL⇒ LBL(E2, L)

SAMEENT(E1, E2)∧̃REL(E1, E,R)
wER⇒ REL(E2, E,R)

SAMEENT(E1, E2)∧̃REL(E,E1, R)
wER⇒ REL(E,E2, R)

These rules define an equivalence class of entities, such that
all entities related by the SAMEENT predicate must have
the same labels and relations. The soft-truth value of the
SAMEENT, derived from our similarity function, mediates
the strength of these rules. When two entities are very simi-
lar, they will have a high truth value for SAMEENT, so any
label assigned to the first entity will also be assigned to the
second entity. On the other hand, if the similarity score for
two entities is low, the truth values of their respective labels
and relations will not be strongly constrained.

Incorporating Ontological Information

Although entity resolution allows us to relate extractions
that refer to the same entity, knowledge graphs can em-
ploy ontological information to specify rich relationships
between many facts. Our ontological constraints are based
on the logical formulation proposed in (Jiang, Lowd, and
Dou 2012). Each type of ontological relation is represented
as a predicate, and these predicates represent ontological
knowledge of the relationships between labels and rela-
tions. For example, the constraints DOM(hasCapital,
country) and RNG(hasCapital, city) specify that
the relation hasCapital is a mapping from entities with
label country to entities with label city. The constraint
MUT(country, bird) specifies that the labels country
and bird; are mutually exclusive, so that an entity cannot
have both the labels country and bird. We similarly use
constraints for subsumption of labels (SUB) and inversely-
related functions (INV). To use this ontological knowledge,
we introduce rules relating each ontological relation to the
predicates representing our knowledge graph. We specify
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Figure 1: An illustration of the example showing how
knowledge graph identification can resolve conflicting infor-
mation in a knowledge graph. Entities are shown in rectan-
gles, dotted lines represent uncertain information, solid lines
show ontological constraints and double lines represent co-
referent entities found with entity resolution.

seven types of ontological constraints in our experiments:
DOM(R,L) ∧̃ REL(E1, E2, R)

wO⇒ LBL(E1, L)

RNG(R,L) ∧̃ REL(E1, E2, R)
wO⇒ LBL(E2, L)

INV(R,S) ∧̃ REL(E1, E2, R)
wO⇒ REL(E2, E1, S)

SUB(L,P ) ∧̃ LBL(E,L)
wO⇒ LBL(E,P )

RSUB(R,S) ∧̃ REL(E1, E2, R)
wO⇒ REL(E1, E2, S)

MUT(L1, L2) ∧̃ LBL(E,L1)
wO⇒ ¬̃LBL(E,L2)

RMUT(R,S) ∧̃ REL(E1, E2, R)
wO⇒ ¬̃REL(E1, E2, S)

Putting It All Together
Refining a knowledge graph becomes challenging as we
consider the many interactions between the uncertain ex-
tractions that we encounter in knowledge graph identifica-
tion (Figure 1). For example, NELL’s ontology includes the
constraint that the attributes bird and country are mu-
tually exclusive. While extractor confidences may not be
able to resolve which of these two labels is more likely to
apply to kyrgyzstan, reasoning collectively using entity
resolution and ontological constraints can provide a solu-
tion. For example, NELL is highly confident that kyrgz
republic has a capital city, Bishkek. The NELL ontol-
ogy specifies that the domain of the relation hasCapital
has label country. Entity resolution allows us to in-
fer that kyrgz republic refers to the same entity as
kyrgyzstan. Deciding whether Kyrgyzstan is a bird or a
country now involves a prediction where we include the con-
fidence values of the corresponding bird and country
facts from co-referent entities, as well as collective features
from ontological constraints of these co-referent entities,
such as the confidence values of the hasCapital rela-
tions.

To accomplish this collective reasoning, we use PSL
to define a joint probability distribution over knowledge
graphs. The universally-quantified rules described are a PSL
model and provide the basis for defining this probability dis-
tribution. In a PSL program, Π, this model is grounded by
substituting values from NELL’s noisy extractions into the
rule template. For example, the rule:

DOM(R,L) ∧̃ REL(E1, E2, R)
wO⇒ LBL(E1, L)

can be grounded by substituting atoms from NELL,
DOM(hasCapital, country), REL(kyrgyzstan,

Table 1: Comparing against previous work on the NELL
dataset, knowledge graph identification using PSL demon-
strates a substantive improvement.

Method AUC Prec Recall F1

Baseline 0.873 0.781 0.881 0.828
NELL 0.765 0.801 0.580 0.673
MLN 0.899 0.837 0.837 0.836

PSL-KGI 0.904 0.777 0.944 0.853

Bishkek, hasCapital), and LBL(kyrgyzstan,
country), into the rule template. We refer to the collection
of ground rules in the program as R.

Unlike Boolean logic where each grounding would have
a binary truth value, our choice of soft-logic requires a dif-
ferent definition of truth value. We term an assignment of
soft-truth values to atoms an interpretation, I , and use the
Lukasiewicz t-norm and co-norm to determine the truth val-
ues of logical formulas under an interpretation. This t-norm
defines a relaxation of the logical connectives (denoted us-
ing ∼) AND (∧), OR(∨), and NOT(¬), as follows:

p∧̃q = max(0, p+ q − 1)
p∨̃q = min(1, p+ q)

¬̃p = 1− p
With this definition, we can assign a truth value Tr(I) to
each grounding r ∈ R and define a distance to satisfac-
tion, φr(I) = 1−Tr(I) for each grounding. The probability
distribution over knowledge graphs, PPi(G) can now be de-
fined in terms of the probability of an interpretation, f(I),
using a weighted combination of the distance to satisfaction
of ground rules in the PSL program:

PΠ(G) = f(I) =
1

Z
exp

[
−
∑
r∈R

wrφr(I)
p

]
where p ∈ 1, 2 specifies a linear or quadratic combination
and Z is a normalization constant.

Most Probable Explanation (MPE) inference corresponds
to finding an interpretation that maximizes f(I), which can
then be mapped to a set of labels and relations that com-
prise the true knowledge graph. In our work, we choose a
soft-truth threshold and determine the true entities, labels
and relations by using those atoms whose truth value ex-
ceeds the threshold. MPE inference can be formulated as
convex optimization in PSL, and using the Alternating Di-
rection Method of Multipliers (ADMM), (Bach et al. 2012)
have shown performance that scales linearly with the num-
ber of ground rules in the PSL program.

Experimental Results
We compare our method to data from iteration 165 of NELL
using previously reported results on a manually-labeled
evaluation set (Jiang, Lowd, and Dou 2012). The dataset
contains 1.7M candidate facts, 440K previously promoted
facts, and nearly 80K ontological relationships. A summary
of our results on this dataset is shown in Table 1.

The first method we compare to is a simple baseline where
candidates are given a soft-truth value equal to the extractor



confidence (averaged across extractors when appropriate).
Results are reported at a soft-truth threshold of .45 which
maximizes F1. We also compare the default strategy used by
the NELL project to choose candidate facts to include in the
knowledge base. Their method uses the ontology to check
the consistency of each proposed candidate with previously
promoted facts already in the knowledge base. Candidates
that do not contradict previous knowledge are ranked using
a heuristic rule, and the top candidates are chosen for pro-
motion subject to score and rank thresholds. Note that the
NELL method includes judgments for all input facts, not just
those in the test set.

The third method we compare against is the best-
performing MLN model from (Jiang, Lowd, and Dou 2012)
which expresses ontological constraints, and candidate and
promoted facts through logical rules similar to those in our
model. The MLN uses additional predicates that have con-
fidence values taken from a logistic regression classifier
trained using manually labeled data. The MLN uses hard
ontological constraints, learns rule weights considering rules
independently and using logistic regression, scales weights
by the extractor confidences, and uses MC-Sat with a re-
stricted set of atoms to perform approximate inference, re-
porting output at a .5 marginal probability cutoff, which
maximizes the F1 score. The MLN method only generates
predictions for a 2-hop neighborhood generated by condi-
tioning on the values of the query set.

Our method, PSL-KGI, uses PSL with quadratic,
weighted rules for ontological constraints, entity resolution,
and candidate and promoted facts as well as incorporating
a prior. We also incorporate the predicates generated for
the MLN method for a more equal comparison. We learn
weights for all rules, including the prior, using a voted per-
ceptron learning method. The weight learning method gen-
erates a set of target values by running inference and condi-
tioning on the training data, and then chooses weights that
maximize the agreement with these targets in absence of
training data. Since we represent extractor confidence val-
ues as soft-truth values, we do not scale the weights of these
rules. Using the learned weights, we perform inference on
the same neighborhood defined by the query set that is used
by the MLN method. We report these results, using a soft-
truth threshold of .55 to maximize F1, as PSL-KGI.

As Table 1 shows, knowledge graph identification pro-
duces modest improvements in both F1 and AUC. Adding
entity resolution and source information to our model while
using soft-truth values for facts provide a richer represen-
tation of the data. One motivation for using PSL for knowl-
edge graph identification was to frame complex joint reason-
ing as a convex optimization. This model can tackle prob-
lems such as the NELL dataset, containing millions of can-
didate facts. Running inference for knowledge graph iden-
tification given a query set (PSL-KGI) requires a mere 10
seconds to perform inference. The MLN method we com-
pare against takes a few minutes to an hour to run. Run-
ning knowledge graph identification to produce the complete
knowledge graph containing 4.9M facts requires only 130
minutes, while such problems are infeasible using existing
MLN optimization techniques.

Conclusion
Knowledge graphs present a Big Data problem: reasoning
collectively about millions of interrelatd facts. We formu-
late the problem of knowledge graph identification, jointly
inferring a knowledge graph from the noisy output of an in-
formation extraction system through a combined process of
determining co-referent entities, predicting relational links,
collectively classifying entity labels, and enforcing ontolog-
ical constraints. Using PSL, we illustrate the scalability ben-
efits of our approach on a large-scale dataset from NELL,
while producing high-precision results. Our method pro-
vides a substantial increase in F1 score while also improving
AUC and scales linearly with the number of ground rules. In
practice, we show that on a NELL dataset our method can
infer a full knowledge graph in just two hours or make pre-
dictions on a known query set in a matter of seconds.
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