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Abstract

Decreasing technology costs, increasing com-
putational power and ubiquitous network
connectivity are contributing to an unprece-
dented increase in the amount of publicly
available data. Yet this surge of data has
not been accompanied by a complementary
increase in annotation. This lack of anno-
tated data complicates data mining tasks in
which supervised learning is preferred or re-
quired. In response, researchers have pro-
posed many approaches to cheaply construct
training sets. One approach, referred to as
feature labels (McCallum & Nigam, 1999),
chooses features that strongly correlate with
the label space and uses instances contain-
ing those features as labeled data for training
a classifier. These high precision examples
help bootstrap the learning process. Another
technique, crowdsourcing, exploits our ever-
increasing connectivity to request annotation
from a broader community (who may or may
not be domain experts), thereby refining and
expanding the labeled data. Combining these
techniques provides a means to obtain super-
vision from large, unlabeled data sources. In
this paper, we investigate using active learn-
ing to combine these approaches in a unified
framework which we call active bootstrapping.
We show that this technique produces more
reliable labels than either approach individ-
ually, resulting in a better classifier at mini-
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mal cost. We demonstrate the efficacy of our
approach through a sentiment analysis task
on data collected from the Twitter microblog
service.

1. Introduction

A longstanding problem in supervised learning is find-
ing labeled data. Data is produced in high volumes
from sources as varied as sensor networks to mobile
phone users. Each dataset can be used for many possi-
ble applications from intrusion detection to sentiment
analysis. Even if labor is expended to meticulously
label data, the training set may not adequately repre-
sent the distribution of test instances. For all these
reasons, methods to produce training data cheaply
are an important component of machine learning re-
search. Many researchers have considered the problem
of scarce training data. Approaches can be broadly di-
vided between those that find cheaper ways of acquir-
ing training labels and those that design algorithms
that benefit from unlabeled data, with a large body of
research that combines both approaches.

1.1. Acquiring Labels Cheaply

Data annotation can expensive and time-consuming,
requiring hours of manual inspection by a domain ex-
pert. To reduce this overhead, researchers have de-
veloped clever strategies for acquiring labeled data
at minimal cost. One such strategy is to employ a
domain-specific heuristic to produce labels. A com-
mon heuristic, feature labels (McCallum & Nigam,
1999), chooses a set of features that are strongly asso-
ciated with the label, and labels instances containing
these features accordingly. For instance, in the con-
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text of sentiment analysis, the keyword “overjoyed” is
strongly correlated with the class Happy; as such, all
instances containing the keyword “overjoyed” could be
labeled as happy with high confidence in the accuracy.

Another recent innovation is crowdsourcing, which
brings the labeling task to a broader community of
willing, motivated participants. This is often accom-
plished by rewarding volunteers for their service, either
monetarily or by designing a game around the task at
hand. Not only is this incredibly cost-effective, it is
also highly parallelizable; given the multitudes of po-
tential participants all over the world (connected via
the internet), annotation can be orders of magnitude
faster than would be possible with just a handful of
domain experts.

An interesting distinction between these approaches is
the precision and recall of the acquired labels. Gen-
erally, features are chosen that have high precision to
strongly correlate with the label, but often these fea-
tures have low recall, applying to a small fraction of in-
stances. On the other hand, crowdsourcing labels can
be acquired for all instances, or arbitrary instances,
allowing high recall, but with no guarantee on the re-
liability of the labels, the precision can be low.

1.2. Leveraging Unlabeled Data

There are essentially two approaches for leveraging un-
labeled data in supervised learning: incorporating the
unlabeled examples directly into the model (i.e. semi-
supervised learning) or actively acquiring more labels.
For the latter, we explore two popular strategies: boot-
strapping and active learning.

Bootstrapping is an iterative process of training and
evaluation. First, a highly selective, high precision
training set is used to train a model. This model is
then used to predict the labels of the unlabeled set.
The intermediate predictions with the highest confi-
dence are then used to supplement the existing train-
ing set in the next iteration. While the theoretical
underpinnings of bootstrapping are not well-explored
(Daumé III, 2007), a possible advantage is that the
training set is augmented with the most polarized in-
stances, allowing a classifier to use a more robust set
of features.

In active learning, the learner is able to influence
the distribution of training examples. Starting with
a completely (or partially) unlabeled instance space,
the learner iteratively requests the labels of a cho-
sen sequence of examples. Intuitively, this allows the
learner to focus on the examples it finds most ambigu-
ous. Typically, the most uncertain instances are those

that lie close to the decision boundary. Querying for
these labels helps to better define the optimal decision
boundary, resulting in a better model. Furthermore,
by focusing less on the obvious examples (those further
from the boundary), it reduces the sample complexity.

1.3. Combining Approaches

In practice, it is not uncommon to explore cheap, ef-
fective annotation strategies, while also leveraging un-
labeled data. In linguistics tasks, such as semantic
analysis, feature labels are often combined with boot-
strapping. A set of keywords strongly associated with
a type of document are defined, and these labels are
used as the seed training set for a classifier trained
through bootstrapping (McCallum & Nigam, 1999).
Active learning and crowdsourcing have a similar syn-
ergy, where uncertain predictions on unlabeled data
are converted to queries in crowdsourcing, which are
labeled by participants on the Internet.

1.4. Drawbacks

One should note that the aforementioned techniques
are not without some risk. For bootstrapping and
feature labels, the choice of high precision examples
often results in high inductive bias and poor gener-
alization. As the number of bootstrapping iterations
increases, the potential for overfitting to a small por-
tion of the instance space also rises. Both methods are
based on some human intuition about the distinguish-
ing features, and while human reasoning has very high
precision, it has significantly lower recall. Other ac-
tive approaches in this setting have used unsupervised
approaches to suggest labels(Liu et al., 2004). Our hy-
pothesis is that active learning via crowdsourcing will
improve the recall by introducing labeled data that
bootstrapping and feature labels failed to produce.

In crowdsourcing, the primary concern is the quality
of the acquired data. Participants may not be famil-
iar with the data or rigorously trained in the label-
ing procedure, resulting in noisy labels. In a realistic
setting, the noise increases as the examples approach
the decision boundary, which is precisely the region of
the instance space active learning explores. As such,
we require that an active learning algorithm be ro-
bust to moderate levels of random classification noise
(RCN). Recent theoretical results (Castro & Nowak,
2006) (Castro & Nowak, 2007) prove that it is indeed
possible to learn an ε-optimal classifier in the presence
of unbounded RCN, with an exponential dependence
on the noise margin. Further results (Balcan et al.,
2006) have shown that an exponential increase in sam-
ple complexity is realizable when the noise rate is suf-
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ficiently low or a high constant – though no improve-
ment can be made under certain high-noise conditions
(Kääriäinen, 2006).

2. Active Bootstrapping

Let D denote a distribution over an instance space
X ⊆ Rd. We assume the existence of a deterministic
mapping c : X → Y, where Y is a finite set of labels.
In the context of sentiment analysis, Y = {1,−1}. The
goal is to train a classifier h : X → Y that minimizes
the expected error Prx∼D[c(x) 6= h(x)].

Algorithm 1 illustrates our proposed technique, which
we refer to as active bootstrapping. We are given a
training set U ⊆ Rd, sampled independently and iden-
tically according to D, as well as a heuristic F : X → Y
mapping certain features to labels. More precisely, if
x ∈ X contains a certain feature that is strongly cor-
related with a y ∈ Y, then F(x) = y; otherwise, F(x)
outputs a null value. We thus begin by invoking F(x),
for all x ∈ U . Let S denote the set of instances for
which F(x) returned a value. We then update U by
removing all instances also found in S, leaving only
unlabeled examples in U .

The algorithm then iterates over the following steps.
A classifier h is trained on S. Consequently, h is used
to predict labels for the remaining unlabeled examples
in U . From this result, the top-k most confident pre-
dictions from each class are added to S. Similarly, the
top-(αk) more uncertain predictions are crowdsourced
to obtain (possibly noisy) labels. U is then updated by
removing all instances from S. The algorithm termi-
nates when the maximum number of iterations, Max-
Iters, is reached.

2.1. Our Contribution

As mentioned earlier, label acquisition strategies have
differing strengths, particularly in terms of the preci-
sion and recall of the labels. Feature labels are as-
sumed to be very high precision indicators of class
membership, but suffer from poor recall; crowdsourc-
ing can potentially expand the recall, but suffers from
RCN, which hampers its precision. Our hypothesis
is that by combining both strategies, we can balance
precision and recall. Selecting the top-(αk) uncertain
predictions (across the entire sample) explores the in-
stance space, thereby improving recall; whereas select-
ing the top-k most confident predictions exploits the
obvious examples to improve precision. Active boot-
strapping performs both exploration and exploitation
simultaneously, thus generating higher quality training
data without the costs associated with domain-expert

Algorithm 1 Active-Bootstrapping Algorithm: Aug-
ments training data with active learning and boot-
strapping

Require: Unlabeled data, U ⊆ Rd

Require: Heuristic mapping F : X → Y
Require: Constants k, α and MaxIters
S ← instances of U with features from F and their
labels
U ← U − S
for i = 0 to MaxIters do

Train a classifier, h on S
Predict labels on U using h
S ← S ∪ {top-k positive instances}
S ← S ∪ {top-k negative instances}
S ← S∪{crowdsourced responses of top-(αk) un-
certain predictions}
U ← U − S

end for

annotation.

3. Evaluation

The following section outlines the experimental proce-
dure used to validate our hypothesis; namely, that a
classifier trained with labels generated from both fea-
tures and crowdsourced labels will outperform a classi-
fier using either strategy alone. This was accomplished
by training a classifier to detect happy and sad emo-
tional content in the Twitter microblogging network,
and using emoticons to generate labels from features
and getting crowdsourced judgments from Amazon’s
Mechanical Turk system.

3.1. Dataset

We acquired Twitter data from a corpus included in
the Stanford Large Network Dataset Collection as re-
ported in (Yang & Leskovec, 2011). This dataset is
believed to contain approximately 20% of all publicly
visible tweets (476M tweets) from a period spanning
June-December 2009. Since our goal was to predict
emotional content and many tweets are objective state-
ments, we filtered the data using a set of emotional
indicators, specifically emoticons. Filtering for emoti-
cons resulted in 41M tweets, from which we sampled
1% to obtain a more tractable dataset. Each instance
in this set consisted of a user ID, a time-stamp and a
tweet. We balanced the number of positive and neg-
ative instances, and applied the normalization steps
described in subsection 3.2 to yield a total of 77,920
instances, (39033 negative and 38887 positive) used for
unlabeled data in our experiments. For evaluation, we
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manually labeled a set of 500 tweets with the same
processing described earlier.

3.2. Normalization

Since Twitter is used for a variety of purposes, it was
first necessary to separate messages that communi-
cated a personal state of being from those that were
likely focused on just sharing information. To this
end, we removed those that contained URLs, under
the assumption that they were less likely to be emo-
tional. We also removed tweets that were shorter than
40 characters total. To reduce the lexicon even fur-
ther, we removed all punctuation, emoticons, user-
name mentions, hashtags, HTML escape sequences,
and non-ASCII characters. We then lowercased all
text to provide a uniform view. This data was used
for classification as well as for crowdsourcing.

Learning a lexicon from Twitter data can be diffi-
cult. The tweet length limitation has given rise to
a whole new language of acronyms, abbreviations and
phonetic abbreviations. Informal context makes users
less attentive to proper spelling and “morphological
emphasis” is commonly used — e.g. “yay” becomes
“yaaaay”, or “yes” becomes “yessss”. To remove in-
frequent terms and misspellings, we removed all terms
with frequency below the mean (the two lower quar-
tiles). Since it is rare for the same character to appear
more than twice consecutively in English words, we
replaced three or more occurrences of a character with
a single character.

3.3. Feature Labels

We assume that certain lexical features — in this case,
emoticons — serve as a proxy for emotional content
in tweets, and can thus be used in lieu of manually-
assigned labels. By generalizing slightly from the
emoticons found on Wikipedia (Wikipedia, 2010), we
produced a regular expression mapping to a compre-
hensive list of emoticons indicating happiness and sad-
ness. Because we have not manually confirmed the
labels, we refer to them as feature labels.

3.4. Crowdsourcing

To acquire crowdsourced labels, we created a “Hu-
man Intelligence Task” on Amazon’s Mechanical Turk.
Users on the service received compensation between
five and ten cents for labeling a series of ten tweets
with labels Happy, Sad or Neither. One of the ten
tweets shown to the users was a tweet that had already
been labeled by the authors; those responses which had
an incorrect label for this tweet were discarded and the

user did not receive payment for them. This acted as
a simple quality control for filtering out bad data from
disinterested or exploitive users. Furthermore, we re-
quired that each crowdsourced tweet used in training
received the same label by a minimum of two users,
thereby providing more certainty in the acquired la-
bel.

3.5. Experiments

We compared an active bootstrapping approach with
baseline results from bootstrapping, with seed sets
generated using feature labels or crowdsourced labels.
When bootstrapping with feature labels, we used ini-
tial seed sets of 1,000, 2,000, and 10,000 feature-labeled
instances. When using crowdsourced labels, we re-
quested a total of 2,000 labels on 1,000 instances that
were randomly chosen from the training set. Approxi-
mately 1,600 labels were acquired through crowdsourc-
ing, and after employing the validation steps described
in subsection 3.4, a total of 670 labels remained. At
each iteration, the training set was augmented with a
number of instances equal to 10% of the seed set size.
These instances were drawn from the most confident
predicted labels on unlabeled data, sampled equally
from the positive and negative classes. Bootstrapping
was run for 7 iterations.

Evaluating active bootstrapping, we used the same
1,000 feature-labeled instances from the baseline clas-
sifier as a seed training set. Following algorithm 1,
we augmented our training set with 100 instances
from predicted labels on unlabeled data. We also
augmented the training set with approximately 100
instances that were queried through crowdsourcing.
These queries were generated from instances with un-
certain predictions in unlabeled data. Each instance
was labeled by two users, yielding 200 total labels.
Since we employed a data quality test, the number of
crowdsourced instances actually added could vary each
iteration.

3.6. Results

Through the experiments described, we were able to
demonstrate that active bootstrapping provides an ad-
vantage over bootstrapping, using the same potentially
noisy or biased seed sets. Table 1 shows the test error
on our manually labeled evaluation set for the different
approaches. Active bootstrapping achieves the lowest
error in this experiment, despite starting out with a
high initial error. Conventional bootstrapping using
the same training set achieves an error of .390 vs .297
for active bootstrapping. Active bootstrapping adds
as many instances each bootstrapping iteration as the
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Method Err, I=0 Err, I=7
Feature Labels, s=1000 .332 .390
Feature Labels, s=2000 .302 .343
Feature Labels, s=10000 .295 .346
Crowdsourcing, s=670 .374 .456

Active Bootstrapping, s=1000 .332 .297

Table 1. Error on a Twitter sentiment analysis task with
just a seed set and after 7 iterations of the bootstrapping al-
gorithm. The error is reported on a manually labeled test
set using different bootstrapping methods. In all cases,
bootstrapping causes the test error to increase. Active
bootstrapping maintains constant performance.

Figure 1. Graph of test error over bootstrapping iterations.
Without active labeling, bootstrapping error increases. By
using crowdsourced labels, the error remains in a tighter
range

conventional bootstrapping classifier with a seed set of
2,000. Despite starting with a larger seed set, this con-
ventional bootstrapping approach also underperforms
active bootstrapping. Even with a very large seed set,
conventional bootstrapping results in increased error.
Using a more diverse seed set from crowdsourced la-
bels does not improve the results of bootstrapping ei-
ther, but getting crowdsourced labels actively in our
approach yields good results. The progress of active
bootstrapping and conventional bootstrapping over it-
erations of the bootstrapping algorithm is shown in
Figure 1. While conventional bootstrapping increases
test error over iterations, active bootstrapping shows
decrease test error.

4. Conclusion

We have presented a framework for acquiring labeled
data from inexpensive sources, as well as leveraging
unlabeled data. This method balances the precision
and recall advantages of both techniques, thereby im-

proving the overall quality of the training data at min-
imal expense. We have tested our hypothesis using a
real-world data set, showing a marked improvement
over baseline methods.

For future work, we would like to provide a more rig-
orous theoretical justification for the benefits of active
bootstrapping. It would be interesting to construct
a simple abstraction that illustrates analytically how
bootstrapping with feature labels compliments active
learning with a potentially noisy oracle. We would
also like to experiment with iteratively adaptive fea-
ture labels, i.e. updating the feature labels based on
the results of each crowdsourced query.
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