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Abstract

In many real-world scenarios, it is necessary to make judgments at differing levels
of granularity due to computational constraints. Particularly when there are a large
number of classifications that must be done in a real-time streaming setting and
there is a significant difference in the time required to acquire different subsets of
features, it is important to have an intelligent strategy for optimizing classification
accuracy versus computational costs. Accurate and timely email classification re-
quires trading off the classification granularity with the feature acquisition costs.
To solve this problem, we introduce a Granular Cost-Sensitive Classifier (GCSC)
which modulates the cost of feature acquisition with the granularity of the clas-
sification, allowing inexpensive classification at a coarse level and more costly
classification at finer levels of granularity. Our approach can classify messages
with greater accuracy while incurring a lower feature acquisition cost relative to
baseline classifiers that do not make use of cost information.

1 Introduction

Electronic mail has become an integral part of daily communication, filling needs ranging from the
delivery of financial statements to personal correspondence. The huge volume, and multifarious
uses of email have an impact on users, who must dedicate time to organize and categorize the influx
of messages. The popularity of the medium also requires service providers to operate at extremely
large scale, handling billions of messages, totaling terabytes of data, each day.

This immense scale provides correspondingly outsized computational challenges. For example, the
vast majority of attempts to send e-mail consist of unwanted marketing messages (“spam”), which
providers must reject or place in a separate folder. Moreover, webmail systems are increasingly
attempting to use more involved processing to make messages easier to organize and provide con-
venience functions. Examples of this functionality include detecting meeting invitations, creating
slideshows from attached photographs, annotating metadata from social network profiles, recogniz-
ing shipment tracking information, and predicting relevancy to a user. Because only a subset of
these processing steps are necessary for a given message, providers need to understand the type of
message being sent.

In these scenarios, the goal of a mail system is to classify a message into a category and take an ap-
propriate action. These categories occur at differing scales with a defined structure: at a coarse scale
messages are considered undesirable (“spam”) or desirable (“ham”), while desirable messages can
be further classified at a finer scale as “business communication” or “social network notifications”.
Messages containing “business communication” may possibly be “shipment notifications” and as a
result are candidates for extracting package tracking information.

This multi-level classification task is not suitable for conventional methods, which rely on static
feature vectors or full-text classification of each message. Because so many message deliveries are
attempted, mail systems cannot consider each message in its entirety before deciding the disposition
of a message; fast decisions must be made using a restricted feature set. Additionally, mail systems
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Command state Associated features
<Connect> φ1 → IP address of remote host

HELO Identity of remote host
MAIL FROM φ2 → Sender of message

RCPT TO Recipient of message
DATA φ3 → Message incl. headers

(a) (b)

Figure 1: (a) Relationship of feature cost and class granularity (b) SMTP Commands

must be sensitive to load and malicious attacks, foregoing more computationally demanding features
in favor of making many decisions. Given some of the complicated enhancements mail providers
apply to messages, eliminating those that are not germane to a message early in its delivery process
can result in a significant decrease in computational costs.

Fortunately, e-mail messages also adhere to a protocol that allows features to be acquired incre-
mentally, at differing costs. The structure imposed by feature costs and dependencies provides a
compelling parallel to the structure of message categories. Relating these two structures provides
the promise of making coarse-to-fine category judgments (Figure 1). Ideally, cheap features can
be used to make coarse judgments and progressively expensive features can be used for classifi-
cation at a finer level. By using cost-sensitive methods that emphasize incremental acquisition of
features on the basis of acquisition cost, the ability to make granular classifications becomes a more
computationally tractable problem.

2 Approach

Problem Description We consider a classification setting, where the goal is to learn a mapping
from instances X to classes Y, h : X→ Y. Here, each instance x is described by a set of features
〈φ1(x) . . . φn(x)〉, and each label Y comes from a set of p class labels, {y1 . . . yp}. Given training
data D = {〈x1, y1〉, . . . , 〈xm, ym〉}, we attempt to learn a hypothesis h which minimizes a loss
function that we will describe shortly.

Two special properties of the classification problem we propose are the structure of features and
the structure of classes. Features often have an acquisition ordering structure imposed by natural
dependencies or artificial protocols in the domain. For example, determining whether a circuit is
functioning correctly requires establishing that current is properly flowing through the components
before testing each component, and in processing email the sender of a message always precedes the
body. These feature acquisition dependencies can be formalized and are related to the cost of feature
acquisition. We say that a feature φj ≺ φi, if, in order to acquire φi, we must have already acquired
φj . For the purposes of this paper, we assume a simple linear order over the features acquired, i.e.,
φ1 ≺ φ2 ≺ . . . ≺ φn. We use Γk = {φ1, . . . , φk} to denote the set of features which must be
acquired in order to acquire feature φk and we use Cφ(Γk) to denote the cost of acquiring feature set
Γk (we assume that the cost does not depend on the particular instance). We refer to Γk as ”feature
level k.”

Similarly, class labels exist in a hierarchy and have dependencies which can influence misclassifi-
cation costs. We assume a hierarchy over the class labels y1, . . . , yp. We use yj < yi to denote
that label yj is an ancestor of yi in the classification hierarchy. We use CY (yi, yl) to denote the
cost of misclassifying an instance with true class label yi as yl. We assume, for example, that
CY (yi, yj) ≤ CY (yi, yl) when yj < yi and yl 6< yi.

Our goal is to learn a model, h that minimizes both misclassification cost (CY ) and feature acquisi-
tion cost (Cφ). For any instance xi, we may acquire a different subset of features, which we denote
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Γki . As a result, our hypothesis operates over incomplete instances. To denote the classification
result of the hypothesis for instance xi over a subset of features Γki we write h(xi,Γ

k
i ) = ŷik.

We introduce a loss function, L(h,xi,Γ
k
i ). This loss function depends on both misclassification cost

and the feature acquisition cost for instance xi. We define the loss function as follows:

L(h,xi,Γ
k
i ) = α(Cφ(Γki )) + (1− α)(CY (yi, h(xi,Γ

k
i )))

where 0 ≤ α ≤ 1. Here the α is a parameter that modulates the contribution of the misclassification
cost and feature cost to the total loss. An interesting feature of this loss function is that increasing
the influence of misclassification cost will decrease the influence of feature acquisition cost.

Granular Cost-Sensitive Classifier Given this problem setting, how can we learn a classifier
which minimizes both the cost of feature acquisition and misclassification? A broad intuition is
that the classifier must know when it needs more information, that is the classifier must choose the
appropriate feature level for each instance such that the decrease in expected misclassification cost
outweighs the cost of acquiring features. A general solution is to define a measure of uncertainty and
acquire additional features for instances where the classifier has a high uncertainty measure. Our
approach is to train a classifier which can provide a decision margin that serves as a measure of the
distance from a given instance to the decision boundary. We use M(h,xi,Γ

k
i ) to denote the margin

for a particular instance xi when features Γki are acquired. By using this margin as a measure of
uncertainty, we can decide which instances would benefit from the acquisition of additional features.
This goal is achieved by learning the optimal margin, mk, for each Γk, where acquiring features
when M(h,xi,Γ

k
i ) < mk minimizes the total loss. To understand the loss for a given instance xi

and candidate margin mk, we introduce a cost-sensitive loss, Lc:

Lc(h(xi)) :

{
L(h,xi,Γ

k
i ) if M(h,xi,Γ

k
i ) > mk;

minr>k L(h,xi,Γ
r
i ) otherwise

When the margin is greater thanmk, the loss is based on using Γki to provide the classification result.
If the margin is below mk, we choose the best loss across all feature levels greater than k. Learning
the marginmk that minimizes Lc for each feature level k, we can classify instances with incremental
feature acquisition using Algorithm 1.

Algorithm 1 Cost-Sensitive Classification Algorithm

Given instance Xi and learned margins (m0 . . .mn−1)
k ← 0
repeat
k ← k + 1
Γki ← Γk

ŷik = h(xi,Γ
k
i )

until M(h,xi,Γ
k
i ) > mk or k = n

return ŷik

One motivation of cost-sensitive classification is to provide a framework to use increasingly costly
features when attempting to predict more granular labels. This is accomplished by adjusting the
parameter α of the loss function for tasks of different granularity. For example, we can choose
α = αc when performing a coarse classification task, and α = αf when performing a fine-grained
classification task. By choosing a relatively high value for αc, we can favor low-cost solutions over
granular labels. As candidates are rejected in the coarse task, we can use a lower value for αf
to produce more accurate class predictions. In general, for each level of a class hierarchy we can
differentially choose α to modulate the importance of misclassification cost and feature acquisition
cost due to computational constraints.

3 Experimental Evaluation

E-Mail Domain E-mail is generally delivered to Mail Transfer Agents (MTAs) using the Simple
Mail Transfer Protocol (SMTP)[1]. This protocol defines a conversation consisting of a well-ordered
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Class Count
Spam 531

Business 187
Social Network 233

Newsletter 174
Personal/Other 102

(a) Message Categories, Counts

Feature Cn Cs C
φ1 0 5.035 .168
φ2 3 6.640 .322
φ3 8 7.299 .510

(b) Feature Classes and Costs

Figure 2: Description of Mail Dataset

set of commands (Figure 1). This well-ordered set of commands corresponds to the strongly ordered
features, φ1 . . . φn considered in the problem description. After each command the MTA must send
a response code, indicating whether the command was successful or resulted in an error, and update
its internal state.

The first piece of information available to the MTA is the IP address of the remote sender, which
arrives as soon as the sender connects. As the conversation continues, the sender will send the
“MAIL FROM” command and provide an e-mail address. The sender must provide one or more
recipients using the “RCPT TO” command. Finally, the sender will enter the “DATA” state and
send the message. Usually the message will consist of headers and content. The headers contain
metadata about the message, including routing information as well as items such as the date and
time the message was sent, the sender’s name, and the subject.

The structure of this conversation lends itself to coarse-to-fine processing. The IP address can dif-
ferentiate between known hosts with a history of sending messages of a specific type and unknown
hosts. In particular, known senders of spam can be given an error after the first command (e.g., after
acquiring the first level features), effectively blocking the sender. Given the vast quantities of spam
that flow through networks, the ability to use few features and quickly reject undesirable messages
can provide a significant efficiency gain. Many major senders also use different sending addresses
or special metadata in the header that allows refinement of class categories such as “shipment noti-
fication” or “shared photographs” in advance of receiving the complete message.

Dataset We evaluated on data sampled from a month-long time window of e-mail data exchanged
by users of Yahoo! Mail. To create a tractable experiment, the feature set was limited to four types
of features: remote IP address, sender mailfrom domain, sender mailfrom address, and tokens from
the message subject. We representatively sampled approximately 100 feature values from each of
the four feature types, yielding 432 features. We then randomly sampled messages from the same
month of e-mail data, restricting the sample to messages containing at least one of the selected
features values. For each of the 432 features, up to three messages were randomly selected, yielding
a total 1227 messages. The full feature vectors, encompassing all possible IP, sender and subject
features found in the 1227 training messages, were constructed for these messages.

Sampled messages were categorized into five categories: “business”, “social network”, “newsletter”,
“personal/unknown” and “spam”. The labels were generated editorially by a human expert. The
frequency of each category is shown in Figure 2(a).

Misclassification and Feature Costs For misclassification cost, we used a basic (0,1) loss func-
tion. For cost at different feature levels, we defined three feature sets, IP features (φ1), sender
features (φ2), and subject features (φ3). Each of these feature sets was attributed a cost, C (Figure
2(b)). Costs were normalized to their fractional share of the cost of the entire feature vector, so
that acquiring all features for a message corresponds to incurring a cost of 1. Two factors were
considered when computing the cost of a feature: the network traffic necessary to acquire the fea-
ture (Cn) and the storage required to hold all possible feature values (Cs). In practice these costs
can be weighted by their computational impact; here we weighted them equally. The normalized
combination of these two costs is shown as C. Since MTAs communicate with senders via TCP, the
network cost can be quantified in packets exchanged with the sender. The storage cost of features
was computed by calculating the entropy of feature values in the sampled messages. The entropy
represents the number of bits needed to optimally encode the feature values, and this is the best-case
scenario for storing feature information.
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Table 1: Baseline results for misclassification and feature acquisition costs, comparing progressive feature
classes and Granular Cost-Sensitive Classifier, 10-fold cross validation

Classifier, Features Coarse CY Fine CY Overall CY Overall Cφ
NB, Γ1 .104 .244 .185 .168

SVM, Γ1 .153 .305 .242 .168
GCSC, αc = .7, αf = .1 .100 .207 .162 .206

NB, Γ2 .098 .214 .164 .490
SVM, Γ2 .125 .247 .167 .490

GCSC, αc = .3, αf = .05 .091 .174 .141 .479
NB, Γ3 .090 .176 .144 1

SVM, Γ3 .097 .196 .150 1
GCSC, αc = .15, αf = .01 .088 .175 .140 .511

Classifier Implementation and Baseline To evaluate the performance of our cost-sensitive ap-
proach, a baseline classifier was trained on the full feature vector as well as progressive sets of
features at each cost level. The baseline classifier was used to evaluate the cost and accuracy on
a coarse learning task, differentiation between spam messages and non-spam messages. Messages
judged non-spam were then used in a fine-grained task of predicting a message category. Results
from two baseline classifiers are presented: a naive Bayes classifier (NB) and a multiclass SVM
implementation (SVM ) [2]. The classifiers were trained using all features, as well as the set of
features at each cost level. Evaluation was conducted using 10-fold cross-validation.

The baseline naive Bayes classifier was then augmented to implement the granular cost-sensitive
algorithm discussed earlier. Specifically, the classifier margin was expressed as the ratio of the prob-
abilities of the two most likely classes. For each feature level, the margin and loss were calculated
for all training instances. These values were used to learn optimal margins for the IP and sender
classes. At evaluation time, additional features were acquired only if the decision margin was below
the optimal margin learned on the training data.

Results An important consideration in results is whether the classifier could complete a coarse-to-
fine learning task and minimize misclassification cost and feature acquisition cost. We compare the
results of the Granular Cost-Sensitive Classifier to the baseline classifiers for these two metrics in
Table 1. When considering misclassification cost, the cost-sensitive classifier was able to achieve a
significantly lower CY relative to the baseline classifier at feature level Γ2 without any significant
increase in feature acquisition cost (p = .05). When considering feature acquisition cost, the cost-
sensitive classifier was able to obtain a significantly lower Cφ compared to the baseline classifier
using feature level Γ3 without any significant increase in misclassification cost (p = .05).

These results show how the choice of α parameters can manage tradeoff between cost and accuracy.
Higher values of α result in the acquisition of fewer features, allowing the classifier to surpass the
baseline classifier in feature cost. Lower values of α allow the classifier to acquire more features,
which let the classifier succeed in producing fewer misclassifications. These results depend on the
delicate relationship between αc and αf ; choosing a higher αc can result in misclassifications at the
coarse level, which limits the ability of the classifier when making fine judgments. Lower values of
αc require paying a high price for each coarse classification, but allow successful classification at
a fine level with no additional feature acquisition. The tradeoff presented by the α parameter and
interplay between αc and αf is seen in Figure 3.

4 Related Work

Many of the ideas present in this work have been considered separately. Computational cost of clas-
sification has been reduced following the approach of [3]: instances are initially processed through
computationally efficient classifiers for a coarse judgment and those instances judged interesting dur-
ing the coarse classification are reconsidered with increasingly computationally demanding models.
However, these approaches generally do not relate cost to a hierarchical multiclass classification,
nor do they focus on feature costs or interdependencies in their analysis. The problem of hierarchi-
cal text classification as initially presented in [4] supports feature sets tailored to the classification
task at a particular level. Subsequent work has considered hierarchical classification of e-mail [5].

5



Figure 3: This figure shows the relationship of αc to misclassification and feature acquisition costs for αf = .1
and αf = .001. As αc is increased, misclassification cost increases and feature acquisition cost decreases.
While the costs for differing values of αf are similar for low values of αc, at high values of αc, the choice of
αf plays a large role in optimizing feature acquisition cost relative to misclassification cost

No work to our knowledge has approached the selection of feature sets in the hierarchy from the
perspective of feature costs. Finally, the question of actively acquiring features to improve classifier
performance both during training [6] and at test time [7] has been studied, but has not explored the
relationship between differing levels of granularity and feature cost. The contribution of this paper,
then, is the synthesis of these facets: applying an active feature acquisition model to a hierarchically
structured output with particular attention to the relationship of feature cost and the granularity of
output.

5 Conclusion

This work presents the Granular Cost-Sensitive Classifier which allows the ability to make both
coarse judgments while incurring a low feature-acquisition cost and more granular judgments while
dedicating more resources to feature acquisition. A surprising benefit is that cost-motivated feature
selection produces superior results; the framework is able to decrease both misclassification cost and
feature acquisition cost relative to cost-insensitive baseline classifiers.
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