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Abstract

The advent of functional Magnetic Resonance Imaging (fMRI) has provided researchers

with a method of probing the activity of the brain with fine granularity. One goal of fMRI

research is to use brain activity to classify the task a subject is performing. Due to the

vast quantity of data in fMRI studies, feature selection techniques are used to select relevant

brain areas (features) as input to a classifier. In this problem setting, features can be selected

through two methods: (1) discriminability tests that compare the feature’s activity between

the specific tasks to be classified or (2) activity tests that compare the task activity against

activity during a rest condition.

A surprising result is that features chosen using activity tests often provide better classifi-

cation accuracy than discriminability tests, despite receiving no information pertinent to the

classification task. The goal of my research has been to use a plausible model of fMRI data

coupled with mathematical analysis and experiments using synthetic data to explain this

phenomenon. Realistic parameters to this model allow very specific predictions about the

performance of different feature selection methods. Subsequently, this approach is validated

and extended through the investigation of experimental data in a semantic categories exper-

iment. Finally, the results of this approach are used to explore alternative feature selection

methods that have the potential to outperform activity-based feature selection.

A case study comparing feature selection methods in experimental data serves to un-

derscore the applications of this research. Although this research examines fMRI data, the

research methodology, analytical approach, and conclusions of this work have the potential

to apply to a broad spectrum of problems and provide insight into the general problem of

dimensionality reduction.



Executive Summary

The process of selecting relevant inputs for a classifier, known as feature selection, has
shown marked benefits in functional imaging experiments that seek to classify the ac-
tivity of the brain by the task the subject is performing. Three studies described in
[Mitchell et al., 2004] show the overwhelming superiority of activity-based feature selec-
tion, selection using tests that contrast task activity against fixation (rest) activity, over
discriminability-based feature selection, which uses tests that contrast activity between two
tasks. Given that the final task is classification, the result that activity-tests outperform
discriminability tests is surprising. This paper seeks to answer two fundamental questions
about feature selection:

1. Why do activity tests outperform discriminability tests in feature selection?

2. How can the performance of activity-based feature selection be improved through new
algorithms?

The approach to answering this questions involves three components: theoretical analy-
sis of a model, tests of algorithms on synthetic data, and experimental validation on an
fMRI dataset. The problem of feature selection is specified using a model of fMRI data
that splits the regions of the brain (voxels) into three general categories: no-signal voxels,
nondiscriminatory signal voxels, and discriminative voxels. No-signal voxels show no activity
beyond noise, nondiscriminatory signal voxels cannot differentiate between task conditions
but demonstrate activity during tasks, and discriminative voxels can be used to discriminate
between tasks.

Theoretical analysis makes an assumption that variances are equal temporally, between
experimental conditions, as well as spatially, across all voxels. Using statistical reasoning,
this analysis produced a function that expresses the probability of making an error in feature
selection in terms of the parameters of the model. These results apply when simple feature
selection methods that examined the magnitude of the difference between task activity and
fixation in the case of an activity test or between two tasks in the case of a discriminability
test, were used to select the most relevant voxel. These probability functions confirm the
common expectation that discriminability tests outperform activity tests in feature selection
under most circumstances. To better understand the conditions that might result in better
selection accuracy from activity tests, a selective exploration of the parameter space was
performed.

Results from theoretical analysis showed that a small difference in the mean activity
of the tasks, the existence of a single nondiscriminatory signal voxel, or a standard devi-
ation less than twice the mean were all sufficient to allow better feature selection using
discriminability-based methods. The result of this analysis is a prediction that superior
activity-based performance may be the result of small differences between tasks or very high
noise. Additionally, the impact of experimental design was investigated in theoretical anal-
ysis, showing that additional task data had a significant impact on the accuracy of feature
selection.

Synthetic data experiments endeavored to verify the trends discovered in theoretical
analysis and extend the analysis to more complicated feature selection methods. Using the
same assumptions and selection algorithms as theoretical analysis confirmed the results of
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theoretical analysis, but relaxing some of the assumptions of the previous analysis allowed
a critical insight into the operation of feature selection. A more realistic version of feature
selection that used variance estimated from experimental data to make selection decisions
was introduced. Results of parameter space explorations using these algorithms on synthetic
data showed that a small separation in task means was not sufficient to allow accurate fea-
ture selection when the variance was estimated empirically. Additionally, an exploration of
variance showed that discriminability-based feature selection is profoundly sensitive to noise
in the data, and that after a specific threshold performance decreases significantly. These
findings suggest an answer to the first question, claiming that noisy data and relatively sim-
ilar task activity is the cause of poor feature selection using discriminability-based methods.

Synthetic data also suggested an answer to the second question posed by this study, by
testing an algorithm referred to as three-way selection. This algorithm creates a model of
the training data and uses this model to predict the experimental condition of the data,
which includes the fixation condition. The performance of the three-way feature selection
algorithm was superior to that of activity-based feature selection in every test. The results
of synthetic data analysis predict that three-way feature selection has the ability to outper-
form activity-based feature selection in functional imaging experiments. Since the results of
synthetic data were coupled to assumptions made by the data model, experiments on real
fMRI data were used to validate the model parameters as well as the findings of synthetic
analysis.

Analysis of experimental data had three goals: (1) validate the assumptions of the model
used in the theoretical and synthetic analysis, (2) examine the actual features chosen by each
feature selection algorithm and interpret their salient characteristics and (3) compare the
performance of feature selection algorithms in a semantic categories experiment. Through a
series of histograms, fMRI activity showed many noisy, inactive voxels, a small population of
active voxels, and few discriminative voxels; the vast majority of voxels exhibited very low
variance, usually smaller than assumed by the model. These results validate the parameters
used in the models and lend credence to the predictions made through the analysis of the
model.

Next, the top features selected by each algorithm were examined. Activity-based se-
lection consistently chose active voxels with low variance and incidental discriminability.
Discriminability-based feature selection consistently chose voxels with large differences be-
tween task means which often had very high variance. Three-way feature selection chooses
voxels that have low variance and high activity and discriminability. The results of this anal-
ysis are that the high variance of discriminability-based analysis is a likely factor behind the
poor performance of discriminability-based feature selection, and that three-way selection
embodies the desirable qualities of both algorithms: low variance and high discriminability.

The final test of the predictions of the analysis presented in this study is the comparison
of feature selection algorithms in experimental data. An initial, primitive analysis using a
weak methodology yielded insignificant results, so a more elaborate and computationally-
intensive methodology with a greater degree of cross-validation was necessary. The results
of this analysis show better performance overall from the three-way selection algorithm,
however activity-based feature selection still shows better performance in some subjects.
Although three-way selection is not clearly the optimal feature selection algorithm, the de-
sirable qualities of the voxels selected by the algorithm as well as the overall accuracy in
experimental data show that the method has great potential.
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1: Introduction:

1.1 Motivation

In the last decade, a variety of different functional Magnetic Resonance Imaging (fMRI)

experiments have been conducted in hopes of understanding a variety of phenomena that

occur in the human brain. While one common method of analysis is to find statistical

differences in brain activity during different tasks, a more difficult problem is trying to

predict the task based on the brain activity. Machine Learning approaches seek to learn a

“cognitive state” [Mitchell et al., 2003] associated with each experimental condition where

a task is performed and then use a classifier to discriminate between these cognitive states.

In such a studies, the goal is to develop a function of the form f: fMRI(t,t+n) → Y, where

fMRI(t,t+n) is the data, Y is a discrete set of experimental conditions, and f is a function

that uses knowledge about cognitive states to predict a label for the data.

By discriminating between cognitive states, experimenters can differentiate between the

different tasks performed in each experimental condition, as well as understand the differing

cognitive requirements associated with those tasks. Learning this function from a series

of brain data to an experimental condition label requires surmounting many challenges,

including the volume of data. Since fMRI experiments produce a great deal of data, on the

order of 15,000 readings each second, it is necessary to apply some feature selection method

to make learning tractable and prevent overfitting due to spurious correlations.

Figure 1: Experimental Paradigm for fMRI Experiments
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One interesting facet of fMRI studies that assists in the feature selection process is the

experimental paradigm employed when gathering data. Specifically, in fMRI studies, data

is collected from a number of experimental conditions in which a specific task is performed,

but also includes data from a “fixation” or rest state. This general framework (figure 1)

is not specific to fMRI experiments; the circumstances are widespread, including problems

such as voice recognition systems that must differentiate between two speakers but also have

access to periods of silence, or attempts to detect the user at a computer terminal that also

have access to the background processes that run when no user is present, or a system for

visually recognizing objects in front of a camera that has access to an empty visual field.

The existence of fixation data allows us to group feature selection methods into two general

categories: (1) activity-based feature selection that contrasts activity differences between a

fixation state and a task state or (2) discriminability-based feature selection that contrasts

two different task states. Given that the desired classification is determining a “cognitive

state”, i.e. deciding between two task conditions, the discriminability-based feature selec-

tion method would naturally be expected to maximize classification accuracy. Contrary

to common intuition, feature selection experiments find that activity-based feature selection

routinely outperforms discriminability-based feature selection. In fact, [Mitchell et al., 2004]

find that activity-based feature selection performs better than discriminability-based feature

selection in over 80% of subjects in data collected from three different studies. A result

so contrary to common intuition merits further study. Why is activity a better selection

metric than discriminability when the task itself is discrimination? What conditions must

hold for this result to come about? How can feature selection be improved by leveraging

this knowledge?

1.2 Related Work:

The exploration presented here is very directly motivated by [Mitchell et al., 2004] who

first commented on this phenomenon which they referred to as the zero-signal learning set-

ting. Specifically, the paper chronicled trends in three vastly different fMRI studies, such as

semantic categories, syntactic ambiguity and sentence/picture verification. The remarkable

finding was that in 23 of 28 subjects over this assortment of experiments, feature selection

that used a simple activity-based method outperformed a discriminability-based method,
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while discriminability-based methods only outperformed activity-based methods in one sub-

ject. Their approach to activity-based feature selection included three variants involving

t-tests between task conditions. The first variant selected active regions regardless of loca-

tion, the second method set a specific quota for each anatomical subdivision of the brain,

and the third method averaged the activation from the selected regions in a given anatomical

subdivision. Each of these methods outperformed discriminability-based feature selection in

the three experiments studied. The robust pattern of superior results from activity-based

feature selection was truly surprising, and an analysis of the results was presented.

[Mitchell et al., 2004] suggested that discriminability-methods are more likely to overfit

the data while activity-based methods might select nondiscriminative regions of the brain.

They predicted that factors such as a high-dimensional data with many irrelevant fea-

tures, high-noise conditions, and small training sets would all have an adverse effect on

discriminability-based methods. Moreover, analysis presented in their work showed that

activity-based methods showed less overfitting and had fewer instances of disjoint distribu-

tions that might bias the classification algorithm. One proposal, reinforced by a scatter

plot of standard deviations, was that the discriminability tests were susceptible to choosing

regions with low signal-to-noise values. One aim of this work is to fully explore the ram-

ifications of the suggestion. The other goal is to approach the problem from a theoretical

perspective and attempt to apply theoretical results to experimental data. For example,

[Eagle, 2002] attempted to relate feature selection with the number of irrelevant features in

a data set, as well as determine the correlation between test error and available training data.

Although this work has theoretical contributions, it only considers feature selection that uses

discriminability tests and fails to extend the analysis to real data. It is important to note

that many papers have compared various feature selection algorithms and the methodology

used in applying them in the broad scope of machine learning, but none seem to offer insight

to the inconsistency of activity and discriminability methods for feature selection. The cited

study is the only research to my knowledge that establishes the questions that arise when

the two broad classes of feature selection are analyzed.
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2: The Problem Definition:

2.1 Goals of This Research

The goal of this paper, at the broadest level, is to quantify the characteristics that cause

activity tests to outperform discriminability tests and apply this knowledge to improve fea-

ture selection. The two questions that this paper seeks to answer are

1. Why do activity-based tests outperform discriminability-based tests in feature selec-
tion?

2. Is there another feature selection algorithm that can exceed the performance of activity-
based feature selection?

This overarching goal requires an approach that tackles the problem in a logical man-

ner and decomposes the more difficult question into smaller, tractable components. The

approach adopted to understand feature selection in this study is three-fold:

1. Derive analytical formulas that characterize feature selection

2. Perform experiments on synthetic data to extend and test analytical findings

3. Use knowledge from exploration to interpret the experimental data

Although the primary goal of this work is to understand feature selection, through the

path of exploration we hope to encounter facts or ideas that can help improve feature selec-

tion. Beyond understanding feature selection, the other major goal of this study is to use an

understanding of feature selection to influence and improve the feature selection algorithms

used in machine learning. This goal has a practical application, and can be evaluated by us-

ing features selected by these algorithms as input to a classifier and examining the resulting

accuracy. To achieve the set of goals listed here, the first step is to quantify the real problem

and any assumptions that are made to facilitate the analysis of the problem.

2.2 A Description of fMRI Data:

Real data from functional Magnetic Resonance Imaging consists of a series of three-

dimensional volumes recorded over an interval of time. Each element of the three-dimensional

volume is referred to as a voxel, and the data recorded for each voxel at each time step is

a decimal value referred to as the hemodynamic response, correlating to the firing rate of

a population of neurons. Data may exhibit correlations both spatially, between connected
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Figure 2: Illustration of three possible voxel classes found in fMRI experiments

regions or neighboring voxels, as well as temporally, following a well-known time course in

response to a stimulus. The overall data may be very sparse, with few voxels relevant to a

classification task, and data may be noisy as well, causing relevant voxels to exhibit activity

that appears uncorrelated to the task during some time steps or facilitating a spurious corre-

lation between task activity and the response of an irrelevant voxel. The true characteristics

of fMRI data are difficult to define, and as a result it is useful to consider a model of the

data rather than attempting to reason about fMRI data itself.

2.3 A Model of fMRI Data:

The model of fMRI data created for the purposes of this paper strives to maintain realistic

properties while providing an opportunity for analytical inquiry. Voxel data in this model

is independent both spatially and temporally, and assumed to come from Gaussian normal

distributions. Moreover, the experimental design of the hypothetical study is such that
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data can come from three different experimental conditions, abbreviated as f, T1, T2 which

represent respectively a fixation condition where no task activity occurs and two distinct

task conditions, Task 1 and Task 2. Beyond an account of the distribution of the data

itself, an extremely simplified model of the neuron populations found in the brain is used

to elucidate trends. To model the behavior of these voxels, we assume that each voxel can

belong to one of three distinct classes. The first class of voxels have no signal and exhibit

truly random activity indistinguishable from noise, the data retains the same distribution

between a fixation condition and task conditions. The second class of voxels display a signal

during the task conditions, but this signal is not unique between task conditions and cannot

be used to discriminate between two tasks. The final class of voxels considered in this

problem statement are those that are truly discriminative, that is to say those voxels whose

distribution is differentiable based on the task conditions. An illustration of these three

classes is shown in Figure 2.

The three classes we describe can be formalized as follows. We define E to be the experi-

mental condition, such that E ∈ {f, T1, T2}, where f is fixation, T1 is Task 1, T2 is Task 2.

Then, for some voxel V drawn from the data set of all voxels in the entire brain or in some

specific region, The distribution of this voxel’s activity can be expressed as conditionally

dependent on both the experimental condition as well as which of the three populations of

voxel activity it belongs to as shown in Table 1.

Class 1 ∀V ∈ C1 : P (V = x|E = f) =
(no-signal) P (V = x|E = T1 ∨ T2) = P (V = x) ∼ N(0, σ2

f )

Class 2 ∀V ∈ C2 : P (V = x|E = f) ∼ N(0, σ2
f )

(nondiscriminatory signal) P (V = x|E = T1 ∨ T2) = N(µA, σ2
a)

Class 3 ∀V ∈ C3 : P (V = x|E = f) ∼ N(0, σ2
f )

(discriminative) P (V = x|E = T1) ∼ N(µT1, σ
2
t1)

P (V = x|E = T2) ∼ N(µT2, σ
2
t2)

Table 1: Distribution of voxels by class

2.4 Problem Setting:

The ultimate goal of this model is to capture the important trends in different feature

selection strategies and lend insight into the conditions that comprise actual fMRI data. If

the data is characterized by this model, a number of parameters establish the problem space
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and can be classified into parameters that are established by the data as well as parameters

that result from the experimental design or feature selection process. These parameters,

referred to as Ψ, are shown below in Table 2.

nC1: Number of Class 1 voxels
nC2: Number of Class 2 voxels
nC3: Number of Class 3 voxels
σf : Variance of data for all voxels in the fixation condition
µA: Mean value of Class 2 voxels during task activity
σA: Variance of Class 2 voxels during task activity
µT1: Mean value of Class 3 voxels during Task 1
σT1: Variance of Class 3 voxels during Task 1
µT2: Mean value of Class 3 voxels during Task 2
σT2: Variance of Class 3 voxels during Task 2
nf : Number of trials in the fixation condition
nT1: Number of trials in the Task 1 condition
nT2: Number of trials in the Task 2 condition
nV : Number of voxels chosen by our feature selection algorithm
Γ: Feature selection algorithm used to choose relevant voxels

Table 2: Complete Model Parameters: Ψ

Our goal is to derive some function F to map our parameters, Ψ, to the expected error,

ǫ, of the feature selection process, where error is defined as the probability of choosing

irrelevant voxels during selection, F (Ψ) = ǫ. The parameter space is quite large, and only

a few of the parameters, namely those in the lower division of the table, can be controlled

by experimental design or the selection of a feature selection algorithm. In order to simplify

analysis, a number of assumptions are made about these parameters in the presented analysis

of the model. The most significant assumption about the data itself is that all voxels are

assumed to have equal variance, σf = σA = σT1 = σT2 = σ regardless of the class or

experimental condition. Not only does this assumption simplify the analysis and allow the

discovery of general trends, but the assumption is also realistic based on profiles of fMRI

data. The remaining assumptions and simplifications involve the heart of the problem, the

feature selection method, Γ.
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2.5 Feature Selection Algorithms

Many different feature selection algorithms have been used in fMRI studies, including

t-tests [Mitchell et al., 2004], analysis of variance (ANOVA) [Cox and Savoy, 2003], cor-

relation to a simulated hemodynamic response, [Cox and Savoy, 2003], linear regression

[Friston et al., 1995]. One of the most popular feature selection methods is the t-test, which

attempts to determine how significantly two random variables differ using the t-statistic,

t = µ1−µ2√
σ2

1
+σ2

2

. The t-test will be used to help formulate our model of feature selection.

As assumptions have been made to preserve the important characteristics of fMRI data

without the accompanying complexity, similar assumptions are made to preserve the per-

formance of feature selection algorithms without delving into the complexity and variety of

different incarnations of these algorithms. By defining the data in terms of normal distri-

butions and making assumptions about variance, much of the groundwork for this approach

has already been laid; what remains is to concisely define and distinguish activity and dis-

criminability tests. The assumption made in the previous section, that variances should be

considered equal between conditions and classes, greatly simplifies this task.

If the feature selection algorithm also assumes that variances are equal, an activity test

merely needs to select the most active voxel and a discriminability test needs to select the

voxel with the greatest difference in means. The most significant ambiguity in this description

is the exact comparison made in the activity test: how should comparisons be made between

task conditions and fixation? To simplify the analysis even further, we assume an activity

test compares the mean activity of the Task 1 condition to fixation. Based on this discussion,

a formal description of the feature selection algorithm, Γ which receives as input the dataset,

D, is given as:

Γ(D) = maxV (µT1 − µf ) Activity

Γ(D) = maxV (|µT1 − µT2|) Discriminability

where maxV represents choosing the top nV voxels in the population that have the largest

values for the appropriate contrast. Since the variance of the data are assumed to be equal,

the most active voxel is the one whose difference from the mean is the highest. Similarly, the

most discriminative voxel is the one whose difference in means is the highest. Allowing these

simplifications creates very simple formulas for both feature selection methods that facilitate
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an intuitive understanding of what occurs in feature selection. Despite these simplifications,

the derivation of F is still complex and often general trends will have to suffice for an actual

mathematical relation between these quantities.

2.6 Remarks

Throughout the discussion of the model, we have noted various assumptions and have

attempted to defend their legitimacy. A collection of these assumptions, a review of their

legitimacy and some perspective on the divergence from real fMRI data can provide a useful

disclaimer to the analysis presented here. The most important principle that is violated

through the creation of a model is the continuum of different parameters in fMRI data. For

example, creating three discrete classes of voxels is an extreme oversimplification of the real

state of affairs where each voxel has a different mean, variance, and task-discriminability.

Another assumption that lies at the core of this analysis is that fMRI data can be modeled

using a normal distribution. While the actual hemodynamic response of the brain might

have a different distribution, the assumption of normally distributed data is made by the

Gaussian Naive Bayes classifier with marked success in many fMRI experiments.

It is important to note that creating any model of fMRI data is apt to introduce assump-

tions which will deviate from the true nature of the data. One could imagine a far more

elaborate model that would choose the task means and variances for each voxel from some

known distribution, creating a diverse set of voxels, and perhaps the insights gained from

this model would be more meaningful, if at the cost of a more difficult analysis. However,

the true nature of fMRI data is difficult to ascertain and the more parameters necessary to

define the model, the greater the potential of making an erroneous assumption about the

model. The main advantage of such a discrete and deterministic method of defining the

activity of the brain is the overwhelming simplicity it affords. With a more comprehensible

mathematical analysis and simply generated synthetic data, this study seeks to penetrate

into the underlying nature of fMRI data and feature selection as much as possible through

modeling and leave the remainder of the analysis to experiments with real data.
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3: Analytical Derivations

3.1 Approach:

Given this model of data, one approach to understanding how activity tests outperform

discriminability tests is the use of mathematical analysis of the model itself to provide a

relation between the model parameters and the probability of erroneous feature selection.

Due to the complexity of the analysis, the results in the following text are restricted to

the scenario where only one feature is selected, and only one relevant feature exists in the

data set. The goal in this section will be to first derive the formula necessary to allow

analysis of feature selection, and then interpret these formula to understand why activity

tests outperform discriminability tests. As extracting trends from the derivations alone can

be difficult, numerical methods are used to evaluate the functions for different parameter

values to show how characteristics of the data affect feature selection.

3.2 A Simple Example:

One way to gain an intuition about the behavior that manifests itself is with a simple

scenario where only two voxels - one from Class 1 (no-signal) and one from Class 3 (discrim-

inative) - are considered. Note again that for the sake of simplicity, we assume all variances

are equal. In the previous section, the behavior of each class of voxels was described in

terms of some true distribution and parameters that affect the distribution. However, the

feature selection process will rely on parameter estimates based on the true value of the pa-

rameters and the amount of data that is sampled. For this reason, consider three variables

nf , nT1, nT2 corresponding to the number of samples from the conditions fixation, Task 1

and Task 2 respectively. What are the expected distributions of the parameters when con-

strained by the amount of data collected in an experiment? The answer is shown in Table 3;

for completeness and future reference, derivations for Class 2 (nondiscriminatory signal) are

also included, although our simple example does not include any Class 2 voxels and the

immediate discussion will not consider them.

Based on this information, it is necessary to model what happens when activity-based or

discriminability-based feature selection is performed. The pure feature selection algorithms
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µ̂f N(0, σ2

nf
)

µ̂T1 N(0, σ2

n1

), V ∈ C1

N(µA, σ2

n1

), V ∈ C2

N(µT1,
σ2

n1

), V ∈ C2

µ̂T2 N(0, σ2

n2

), V ∈ C1

N(µA, σ2

n2

), V ∈ C3

N(µT2,
σ2

n2

), V ∈ C3

Table 3: Distribution of Parameter Estimates based on Data

described previously allowed an intuitive understanding because the feature selection pro-

cess was simply finding a maximal value. When the individual contrasts required for feature

selection have differing variances, analysis must reason about the distribution of the differ-

ences in mean values rather than the difference in the mean values alone. In activity-based

feature selection, the variable of interest is the difference between the estimated mean of task

activity and the estimated mean of fixation activity, or µ̂T1 − µ̂f , henceforth referred to as

α. In discriminability based feature selection, the variable of interest is the absolute value

of the difference between the estimated mean of Task 1 and the estimated mean of Task 2,

|µ̂T1 − µ̂T2|, henceforth referred to as β. The distribution of these parameters is defined in

Table 4

α = µ̂T1 − µ̂f β = |µ̂T1 − µ̂T2|
Class 1 (no-signal) N(0,

(nf+n1)σ2

nf∗n1

) N(0, (n1+n2)σ2

n1∗n2

)

Class 2 (nondiscriminatory signal) N(µA,
(nf+n1)σ2

nf∗n1

) N(0, (n1+n2)σ2

n1∗n2

)

Class 3 (discriminative) N(µT1,
(nf+n1)σ2

nf∗n1

) [N(µT1 − µT2,
(n1+n2)σ2

n1∗n2

)

+N(µT2 − µT1,
(n1+n2)σ2

n1∗n2

)]

Table 4: Distribution of Differences in Parameter Estimates by Class

The crucial problem in this example is to determine the probability of making an error

in feature selection, the probability that the irrelevant, Class 1 voxel will be chosen by

the feature selection algorithm instead of the the relevant Class 3 voxel. These formulas

alone provide some crucial intuitions. When comparing voxels for feature selection, the

real comparison is between data sampled from α and β. Notice that the two differences

between activity and discriminability tests are the variance of the distributions (henceforth

referred to as σ2
α and σ2

β), and in the case of discriminative Class 3 voxels, the mean value of
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the distribution. These two factors are responsible for determining which feature selection

method will work best. A lower variance for the data will result in more tightly clustered

data, less spread, and greater discriminability between the two voxel classes, so a low variance

is a desirable trait. Note, additionally, that the number of trials from each condition is

equally essential to determining the variance of α and β. The other quantity to consider is

the difference in the means - if the task means are very different then they will be easily

discriminable from the noise of the data.

These trends will be more apparent if the actual probability of selecting an irrelevant voxel

is derived for each of these cases. What is the probability that the no-signal Class 1 voxel

is chosen as relevant instead of the discriminatory Class 3 voxel? This question must be

answered separately for the two feature selection methods - activity and discriminability -

but the approach remains the same for both. The idea is to reason about random variables

drawn from the distributions α (distribution of µ̂T1− µ̂f ) and β (distribution of |µ̂T1 − µ̂T2|)
that were introduced earlier and computed in Table 4. The value of the difference between

the estimated mean of task 1 and the estimated mean of fixation is a random variable, and

conclusions about its value must come in the form of statements of probability. Simply put,

we cannot authoritatively state what the maximum value of µ̂T1 − µ̂f will be, but we can

generate the probability that this contrast is equal to a specific value. In the analysis that

follows we use this property to derive the probability that a single Class 1 voxel is judged

more relevant than a single Class 3 voxel, and use shorthand to simplify the derivation. VC1

is a random variable distributed according to α or β for a Class 1 voxel, as stated in Table 4.

Notation such as {VC1} is used to represent a set of such random variables. Similarly, VC3

is a random variable whose distribution conforms to that of a Class 3 voxel. The specific

distribution, α or β is not essential until the final step of the analysis when the probabilities

corresponding to the different feature selection methods are substituted into the equation.

Note, z is the standard normal (N(0,1)) PDF, and Z is the standard normal CDF

P ( Class 1 voxel appears more relevant than Class 3 voxel) =

P ( random variable VC1 has value greater than random variable VC3) =

P (VC1 > VC3) =

∀ θ, P ((VC1 > θ) ∩ VC3 = θ) =

12



∫

θ
[P (VC1 > θ) ∗ P (VC3 = θ)] =











∫

θ

[

(1 − Z( θ
σα

)) ∗ z( θ−µT1

σα
)
]

(Activity Test)
∫

θ

[

(1 − Z( θ
σβ

)) ∗
(

z( θ−µT1+µT2

σβ
) + z( θ−µT2+µT1

σβ
)
)]

(Discrim Test)

Additionally, this derivation can be extended to the case where there are many (nC1) Class

1 voxels and only one Class 3 voxel.

P (some {VC1} is more relevant than VC3) =

P ( not all {VC1} less relevant than VC3) =
∫

θ
[(1 − (P (VC1 < θ)nC1) ∗ P (VC3 = θ)] =











∫

θ

[

(1 − Z( θ
σα

)nC1) ∗ z( θ−µT1

σα
)
]

(Activity Test)
∫

θ

[

(1 − Z( θ
σβ

)nC1) ∗
(

z( θ−µT1+µT2

σβ
) + z( θ−µT2+µT1

σβ
)
)]

(Discrim. Test)

Although this derivation provides a mathematical formula to determine the probability

of mistakenly choosing an irrelevant voxel, it relies on the CDF of a normal distribution

and so analysis fails to provide the formula in a closed form. Investigating all trends in this

example is beyond the scope of this document, but some trends are readily apparent from

this expression. For example, as the number of Class 1 voxels (nC1) increases, the expression

Z( θ
σ
)nC1 approaches 0, causing the entire expression (1 − Z( θ

σ
)nC1) to approach 1, leaving

the integral over all values of VC3, which is simply 1. That is to say, as the number of no-

signal voxel increases the probability of mistakenly choosing an irrelevant voxel approaches

1. However, this does not provide a clear idea of how the function approaches the asymptote.

This trend is dependent on the variance and means of the functions in question, but numerical

integration provides a general form for the function. Specifically, the probability of choosing

a Class 1 voxel instead of a Class 3 voxel as a function of Class 1 voxels initially grows linearly

and then logarithmically approaches an asymptote. The point at which linear growth gives

way to asymptotic growth depends on the means (µT1 and µT2) as well as the variance of the

data. Figure 3 demonstrates this trend in two different examples where parameters vary.
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Figure 3: Growth of the probability of choosing an irrelevant voxel under different conditions

3.3 A More General Model

Now that the process of deriving the probability of error for a feature selection algorithm

and a given set of voxels is clear, a more complicated derivation can be introduced. If the

scenario in the last section is expanded to include a single Class 3 (discriminative) voxel and

an arbitrary number of Class 2 (nondiscriminatory signal) and Class 1 (no-signal) voxels, a

deeper understanding of the phenomena in question can be obtained. What is the probability

that a Class 1 or Class 2 voxel will be judged more relevant than a Class 3 voxel?

These equations yield some interesting observations. When using discriminability tests,

the addition of Class 2, nondiscriminatory signal voxels, has the same effect to adding more

Class 1, no-signal voxels. This occurs because for both classes of voxels, the expected

difference in means is 0 (see Table 4). On the other hand, because the contrast between Task

1 and fixation differs depending on the class of the voxel, the addition of Class 2 voxels has a
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P(({VC1} more relevant than VC3 or {VC2} more relevant than VC3) =
P (({VC1} > VC3) ∪ ({VC2} > VC3) =
P ({VC1} > VC3) + P ({VC2} > VC3) − P (({VC1} > VC3) ∩ ({VC2} > VC3) =
∫

θ P (VC3 = θ) ∗ [(1 − (P (VC1 < θ)nC1) + (1 − (P (VC2 < θ)nC2)
−[(1 − (P (VC1 < θ)nC1) ∗ (1 − (P (VC2 < θ)nC2)]] =















∫

θ z( θ−µT1

σα
) ∗ [(1 − Z( θ

σα
)nC1) + (1 − Z( θ−µA

σα
)nC2)

−[(1 − Z( θ−µA

σα
)nC2) ∗ (1 − Z( θ

σα
)nC1)]] (Activity Test)

∫

θ

(

z( θ−µT1+µT2

σβ
) + z( θ−µT2+µT1

σβ
)
)

∗ [(1 − Z( θ
σβ

)(nC1+nC2))] (Discrim. Test)

different impact than Class 1 voxels on an activity test. The net result is that an activity test

may be crippled by the addition of Class 2 voxels, as the increased nondiscriminative activity

of the Class 2 voxels during task conditions is hard to distinguish from the discriminative

activity of Class 3 voxels. However, the surprising result that initiated this work was that

activity tests do outperform discriminability tests. How can this observation be reconciled

with the equations above?

Consider a few possibilities that might cause activity tests to outperform discriminability

test: the discriminative task means (µT1, µT2) might be very close together, the mean activity

of Class 2 voxels (µA) might be very small, the variance of the data may be very large

compared with the difference in task means, or there may be very few Class 2 voxels. After

investing the labor to generate analytical expressions for the performance of activity and

discriminability tests in feature selection, the new goal is to define the boundary conditions

where discriminability tests begin to outperform activity tests. The previous hypotheses

that posit conditions that might allow activity tests to outperform discriminability tests

offer a natural set of boundaries to investigate. Each of these hypotheses can be qualified or

disqualified by numerical integration of the equations presented earlier.

3.4 Numerical Integration: Boundary Conditions

nf nT1 nT2 nC1 nC2 nC3 σf,T1,T2,A µf µA µT1 µT2

300 500 500 10000 10 1 3 0 2.1 2.6 1.5

Table 5: default parameters for this section

The derivations in the previous sections offered mathematical insight to issues that are

relevant to the feature selection process. The derivation so far has produced a partial so-
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lution mapping the parameters of the data model Ψ (as stated in Table 2) to an expected

error ǫ during feature selection, giving us the desired function of form F (Ψ) = ǫ. Yet these

intuitions do not necessarily confirm the phenomenon under investigation, namely the su-

periority of activity tests to discriminability tests. Worse, the immediate intuition from

the last derivation contradicts empirical results insofar as suggesting that discriminability

tests should perform relatively better as the number of Class 2, nondiscriminatory signal

voxels increases. How can this be? One possibility is that a specific set of model parameters

might elicit performance similar to that seen in experiments. Four possibilities mentioned in

the previous section will be investigated to see what sort of performance results from some

specific conditions. The goal of this analysis is to find a set of conditions that might show

how activity results outperform discriminability results. Some reasonable default parameters

are used in the following experiments unless noted otherwise and are listed in Table 5 for

completeness.

• differences in task means:

Assume, in the simplest case, that no Class 2 voxels exist. How does the difference

between task means affect the probability of choosing a nondiscriminative voxel during

feature selection? Surprisingly, the difference in task means can be small relative to

the standard deviation without affecting the probability of erroneous feature selection.

For example, with µT2 = 1.5, the probability of choosing an irrelevant voxel, ǫ when

µT1 = 2.3 is ǫ = .362 for a discriminability test, and this probability converges to

approximately zero once the first task mean becomes larger than 2.6. (ǫ ≈ 0 for values

of µT1 > 2.6). The probability of an incorrect voxel selection using an activity test

remains approximately zero as well throughout the range. Although activity tests

outperform discriminability tests in this situation, the key result is that the difference

between them becomes insignificant as the difference in task means increases past a

certain value. This single example is representative of a general trend that causes

accuracy to approach an asymptote as the difference in task means increases beyond

some threshold. While the magnitude of this difference is large in absolute terms, it

amounts to .37σ, well under half a standard deviation. The net result of this trend

reveals that relatively good feature selection performance is possible on data whose

differences in means is small relative to the standard deviation, or that even small

signal-to-noise ratio will result in successful classification.
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• number of nondiscriminatory signal voxels:

If the distribution of discriminatory voxels is not to blame for the observed differences

between activity and discriminability-based feature selection, perhaps the culprit is

the number of Class 2, nondiscriminatory signal voxels. Consider the case where the

parameters are the same as those listed in Table 5, notably µT1 = 2.6, µT2 = 1.5,

µA = 2.1. How many Class 2 voxels would be necessary before discriminability-based

feature selection outperformed activity-based feature selection when attempting to

select a single discriminative voxel? Surprisingly, even a single Class 2 voxel will result

in a .05 error rate for activity-based feature selection and an error rate of .03 for

discriminability based feature selection. Moreover, if 55 Class 2 voxels are found in the

population, the error rate for selection, ǫactivity increases to .50, while the error rate of

discriminability-based feature selection remains at .03. Even if few nondiscriminatory

voxels are in our population, the performance of activity-based feature selection is

injured. As such, either the model of data fails to capture the true nature of the

problem or the hypothesis that the performance characteristics of feature selection

methods is the result of a small number of nondiscriminatory signal voxels is invalid.

• mean value of nondiscriminatory signal voxel:

How active can a Class 2 voxel be before its presence causes activity-test performance

to deteriorate? Consider a situation where Class 2 voxels have mean µA = 1.45, while

the single discriminatory voxel has the default means µT1 = 2.6, µT2 = 1.5. In this case,

Class 2 voxels whose mean value is under the lower activation threshold of a discrim-

inative voxel can have a marked effect on the reliability of feature selection if present

in large quantities. With 1000 such voxels, 10% of the population size, the probability

of selecting an irrelevant voxel using a discriminability-based method is equal to that

of an activity-based method at .03. Also note that this estimate is a best-case scenario

for a discriminative voxel during an activity-test; the analysis compares the higher

task mean of a discriminative voxel against fixation, yielding a higher probability of

successfully choosing that voxel. The result that even relatively inactive nondiscrim-

inatory voxels can have a large impact on the performance of activity-based feature

selection, provided there are enough such voxels, can be construed as a general state-

ment about feature selection or a failure of this model. The success of activity-based
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feature selection might result from a dataset that truly contains few and relatively

inactive nondiscrimantory signal voxels. However, note that the difference between

the expected error rates of activity and discriminability feature selections is not very

large, a result that belies actual experimental findings.

• signal variance:

How does noise in the voxels affect both activity and discriminability tests? One

assumption, albeit reasonable, that has been propagated through the experiments de-

tailed so far is that the data is noisy. Estimates of noise have been conservative, as

examples so far have assumed that the mean of task 2 activity, µT2, was 1.5 while

the standard deviation, σ was 3, creating conditions where the magnitude of the noise

is substantial compared to the signal in the data. Consider the case where the stan-

dard deviation is approximately three times the lower mean task value, σf,T1,T2 = 4.5.

Note that this analysis assumes that there is one discriminatory voxel with means

µT1 = 2.6, µT2 = 1.5 and ten nondiscriminatory signal voxels with mean µA = 2.1. In

this situation, activity-based feature selection does outperform discriminability-based

feature selection; the error rate for the activity selection is .50 while the error rate

for the discriminability based feature selection is .49. If noisier data is considered,

σf,T1,T2 = 7, the error rates increase to .68 for activity-based selection and .91 for

discriminability-based feature selection. The actual curve, as shown in Figure 4 is

quite interested. As noted before, both values for the noise are large with respect to

the mean: a possibly unrealistic assumption. However, very noisy data certainly could

be a factor in the observed superiority of activity-based feature selection.

These and other trends are apparent in Figure 4, which shows the decay in performance as

a single parameter varies from the defaults in Table 5. Additionally, earlier discussions un-

derscored the importance of the amount of data available in an experiment. Controlling the

experimental design to collect differing amounts of experimental design is possibly the only

way a researcher can improve feature selection apart from the selection algorithm. Figure 5

shows the effects of experimental design, demonstrating the effects of varying the amount

of fixation data and task data collected while maintaining default values for other param-

eters. Increasing the amount of data collected serves to reduce the variance in parameter

estimates, allowing better feature selection. As the amount of fixation data increases, ac-
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Figure 4: Trends from Numerical Integration

tivity tests have better parameter estimates and show better performance, while increasing

the amount of task data collected improves both activity and discriminability-based feature

selection. While collecting more data leads to improved results, the practical considerations

of patient attentiveness and experimental costs may prevent copious data selection.

The net result of these explorations has been to characterize the performance of feature

selection algorithms in a series of constrained situations. While the results have been valu-

able and contributed to the comprehension of the intricacies of feature selection, the power

of the analysis has been limited. The most limiting constraint in the analysis so far has

been the ability to model the performance with only one Class 3 discriminative voxel. In

practice, there is more than one discriminative voxel, and feature selection methods select

more than one voxel as input to feature selection methods. While it might be possible to

derive similar formula for multiple discriminative voxels or a selection set larger than one
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Figure 5: Impact of Experimental Design

voxel, or both, the task seems daunting and was beyond the scope of my knowledge. Instead,

to understand more complicated facets of the feature selection problem this study shifted

its focus to synthetic data. Moreover, having both synthetic data and theoretical analysis

allows a valuable comparison between the theoretical predictions based on a model and the

experimental findings from data that is derived from the model parameters.

4: Experiments Using Synthetic Data

4.1 Approach

The analysis of feature selection using synthetic data has many possible avenues, so a

coherent approach is necessary. In order to validate the findings of the theoretical approach,

synthetic data should produce the same results. Moreover, an additional flexibility allowed
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by synthetic data is the ability to define new feature selection algorithms through imple-

mentation rather than mathematical analysis. This allows us to test more complicated or

involved selection strategies without requiring complex mathematical calculations. These

motivations allow us to define the goals of synthetic data analysis.

1. Verify the predictions from theoretical analysis under identical conditions

2. Introduce new feature selection algorithms

3. Apply feature selection algorithms to the synthetic data to extend the predictions of
theoretical analysis

The first goal can be summarily filled; tests identical to those described in the numerical

integration of this paper were run and produced similar results. The second goal allows us

to specify feature selection algorithms that are similar to those used in real fMRI analysis,

as well as introduce new feature selection algorithms that have not yet been tested in fMRI

experiments. The third goal is the most complicated to define, and will require a choice

of the parameters that require exploration. The results from the previous section will help

guide the exploration presented in the experiments on synthetic data.

4.2 Generation of Synthetic Data

Synthetic data generation created a dataset similar to an fMRI data set based on supplied

parameters. The parameters specified to generate the dataset (from Table 2) were nf ,

nT1, nT2, nC1, nC2, nC3, µA, µT1, µT2, and σf . Additionally, the model implemented the

assumption that the variance of data is the same regardless of condition or class. Data for

each synthetic voxel was drawn independently from a standard normal random generator

and scaled to the desired mean and variance.

4.3 Feature Selection in Synthetic Data

The existence of actual data allows greater flexibility for feature selection methods but also

requires . For example, while it is possible to select features based on the magnitude of the

difference in task means, it is also possible to estimate the variance of the data and use that

as a factor in the feature selection process. In addition to the feature selection algorithms

that rank voxels based on the difference in task mean and fixation mean for activity tests

or the difference between task means for discriminability tests, new algorithms will rank
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voxels based on the probability of observing the appropriate difference in means based on

the variance of the data. Seeing a high task mean or task difference if there is no expected

difference will yield a low probability, so the selection algorithms select the most improbable

data given the assumption that there are no discriminative voxels. To supplement the

algorithms used in theoretical analysis that simply choose the maximum difference between

means, new versions of each algorithm, labeled Activity’ and Discriminability’, that estimate

the variance of the data are introduced below, (note again z is the standard normal PDF

∼ N(0, 1)):

Γ(D,nV ) = minV (z(
µT1−µf

.5∗(σT1+σf )
)) Activity’

Γ(D,nV ) = minV (z( |µT1−µT2|

.5∗(
√

σ2

T1
+σ2

T2
)
)) Discriminability’

In addition to the two algorithms that have been analyzed in detail, tests of synthetic data

will include a third feature selection algorithm that will be referred to as three-way feature

selection and is slightly more complicated. The idea behind three-way feature selection

is to predict labels for the training data using parameter estimates from the training data.

Specifically, the algorithm (see Table 6) computes voxel-specific means and variances for each

condition and then predicts the most likely condition for each data point. Voxels with the

greatest accuracy in prediction are judged to be relevant to the task. The major advantages

of the three-way feature selection algorithm are that it uses all of the training data in the

selection process and it attempts to predict the label of the data, which is similar to the

classification task that for which the feature selection algorithm is choosing data.

4.4 Drawbacks of Synthetic Data

The fundamental limitation of synthetic data is the fact that results only pertain to a

single sample. In the theoretical analysis, results were obtained from treating the model of

the data as a sampling distribution and using the results to create parameter estimates. In

the case of synthetic data, samples are generated manually, and running selection on these

samples is time consuming. Moreover, the results are derived from a finite number of data

sets. As a result, results from synthetic data simulations are noisy, and many samples must

be generated to assure performance is consistent. In contrast, synthetic data embodies some

characteristics of the real fMRI data in that we have data limited by the number of subjects
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foreach voxel v

µf = mean( v | cond(v) = fixation);

σf = std( v | cond(v) = fixation);

µ1 = mean( v | cond(v) = task 1);

σ1 = std( v | cond(v) = task 1);

µ2 = mean( v | cond(v) = task 2);

σ2 = std( v | cond(v) = task 2);

foreach time t

pf (t) = z(
v(t)−µf

σf
);

p1(t) = z(v(t)−µ1

σ1

);

p2(t) = z(v(t)−µ2

σ2

);
//(label with the most probable condition)

predictedLabel(t) = indexOfMax(pf(t), p1(t), p2(t));
end

//(Score voxel based on the accuracy of predicted labels)

score(v) = labelAccuracy(predictedLabel);

end

Table 6: Three Way Selection Algorithm

in an experiment, and the data has noise that may cause the data to deviate from its expected

distribution. However, synthetic data also fails to capture all of the details of fMRI data due

to the underlying model used to generate the data. As discussed in Section 2:, the model

uses a very simple view of fMRI data that assumes that data from voxel populations can

be described using three different distributions with equal variances. As a result, synthetic

data has some of the strengths of real data as well as theoretical analysis but has properties

that prevent it from matching the results of either.

4.5 Results from Synthetic Data Experiments

Experiments from synthetic data will investigate the effect of three parameters on the

ability to choose relevant features: the difference in task means, the number of nondiscrim-

inatory signal voxels, and the magnitude of the noise. These three factors may play a very

important role in the success of feature selection and the results of these experiments should

prove insightful.

The parameters in all of the synthetic data experiments were: nC1 = 3000, nC2 = 150, nC3 =

50, µA = 2.1, µT1 = 2.6, µT2 = 1.5, σf,A,T1,T2 = 3, Γ = {activity’, discriminability’, three-way}.
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Figure 6: Task 1 Mean and Selection Error (Synthetic Data)

However, in each experiment one of these parameters is varied to view the results. Although

the synthetic data experiments used to verify the theoretical analysis used the same param-

eters as the analysis, different parameters were chosen for synthetic experiments to speed

simulation and reduce memory requirements. Results are considered representative of the

feature selection problem in general. The results reported in the graphs are percent selection

error of feature selection, namely the percentage of selected voxels that are not in Class 3.

Figure 6 shows the effect of varying the mean of Task 1, Figure 7 shows the changes that

occur as more Class 2 voxels are added, and Figure 8 reveals the effects of noise on feature

selection.

The most striking observation that is apparent from the graphs of feature selection is that

estimating the variance of the data makes feature selection more difficult, as an additional

parameter must be estimated instead of relying on a known value. This effect is particularly

pronounced for discriminability tests, which perform more poorly that the other algorithms

in almost every condition in each test. For example, discriminability tests are selecting

about half of the relevant voxels in Figure 7, even when presented with fewer competitors
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than in the theoretical analysis, which assumed the presence of 10,000 no-signal voxels.

Moreover, it is interesting to see the impact of added noise (Figure 8) on discriminability

tests – their error climbs far more rapidly than other tests. Another interesting trend is

the sharp drop in error as the difference in task means increases, once again supporting the

hypothesis that there is a threshold (see Figure 6, µT1 = 2.8) for the difference in means

that allows successful discrimination. Mean differences smaller than the threshold yield

very poor selection performance and mean differences greater than the threshold yield good

selection performance. The impact of this trend yields a critical insight: if mean differences

are too small, discriminability-based feature selection will be unable to discriminate task

salience from noise. If the differences in real data are not beyond this threshold, the poor

performance of discriminability tests makes more sense.

The contrast in the results of adding nondiscriminatory in these tests is also noteworthy;

ten Class 2 voxels were enough to allow discriminability tests to outperform activity tests,

but here 150 Class 2 voxels have not caused activity tests to suffer. Perhaps this result

speaks to the relative ratios of Class 2 and Class 3 voxels; with ten times as many Class 2

voxels activity test suffer, but with three times as many Class 2 voxels activity tests seem

to do fine. This may be another reason that activity tests outperform discriminability tests

in this experiment. However, another interesting result is that the new three-way feature

selection algorithm outperforms activity tests in every case. As the number of Class 2 voxels

increase, the two algorithms appear to approach an asymptote (Figure 7, nC2 = 500), the

difference between the two algorithms appears very significant.

4.6 Conclusions from Synthetic Data

The two questions this study seeks to answer are:

1. Why does activity-based feature selection perform better than discriminability-based

feature selection?

2. Can we improve on this performance with another algorithm?

This section has provided answers to both of those questions. Three interesting trends in

the experiments with synthetic data support these answers. The first is that the synthetic
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experiments show that activity tests outperform discriminability tests in almost every case.

Why does this occur? In the theoretical analysis, the feature selection algorithm did not

estimate the noise of the data, but in our present analysis the algorithms are more sophisti-

cate and estimate the noise for each voxel. The generated noise has some variance, and the

imperfect estimates of noise cause the difference in task means to appear less salient. While

a difference of task means of .4σ was enough to cause a discriminability test to converge to

0 in the theoretical analysis, the same difference in task means results in feature selection

that chooses only half of the discriminative voxels in the data. The observation that a small

difference is no longer sufficient for good classification accuracy may be linked to a second

observation apparent from the results shown in Figure 8 which demonstrates how sensitive

discriminability tests are to noise. Just as we found a separation of means beyond a certain

threshold causes the error of discriminability tests to converge to 0, a certain threshold of

noise seems to make a large difference to selection accuracy. The final observation is that

the Three-Way feature selection algorithm seems to have great potential on the basis of syn-

thetic data experiments; it outperforms activity-based feature selection in all cases studied.

This result supports the ability of the new algorithm to perform both a contrast between

all conditions, including the fixation conditions. The prediction of fixation data helps the

algorithm choose voxels that are truly active, while the contrast between tasks allows it to

select discriminative voxels instead of nondiscriminatory active voxels. These results are now

evaluated using experimental data.

5: Discoveries from Experimental Data

5.1 Approach

Having discovered some interesting characteristics of feature selection from synthetic data

experiments, the next step is to extend the analysis from the previous two sections to real

fMRI data. One problem is that the previous sections predicted results that were dependent

on the conditions present in fMRI data, however the conditions present in fMRI data are a

mystery. Prior to this analysis, it might have been difficult to pinpoint the characteristics of

the data that would be useful in determining the nature of fMRI data, but the work thus far

suggests some natural questions that an analysis of fMRI data should answer. Specifically,
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analysis should seek to answer three questions:

1. What are the characteristics of the overall population of voxels?

2. What are the specific characteristics of individual voxels?

3. How do different feature selection algorithms leverage these characteristics to achieve
good performance?

After answering these three questions, the answer to the two big questions that motivated

this study, “Why does activity-based feature selection outperform discriminability-based

feature selection?” as well as the corollary, “Can we design an algorithm that outperforms

activity-based feature selection?” should be apparent. The approach we adopt is to gener-

ate histograms of the means, variances and mean differences of the voxels in the brain in

aggregate, and then take a more detailed look at the voxels selected during activity, discrim-

inability, and three-way tests in hopes of gaining a better understanding of the operation of

each of these algorithms. Before proceeding with this discussion, a few prefacing remarks

about the data set are necessary.

5.2 Experimental Description

The data set used in this analysis investigates a semantic categories in five subjects, and

was provided by Professor Marcel Just at Carnegie Mellon University. In this experiment,

subjects are asked to classify each word in a series based on whether it belongs to a specific

category. The three categories in this study were fish, vegetables, and trees. The experiment

was organized into a series of presentation sets, each of which consisted of trials that con-

tained blocks of words. There were a total of four presentation sets, each of which consisted

of three trials, for a total of twelve trials. The presentations of categories were counterbal-

anced to avoid deterministic interference effects. Each of the trials contained a block of 20

words from one of the categories. Each block of words consists of twenty repetitions of a

word presentation lasting 400 milliseconds followed by 1200 milliseconds of a fixation screen

with an ’x’ at the center. Since there were twenty repetitions of a 1.6 second task, the data

per trial consists of 32 images. Data was collected for the fixation condition from 24-second

fixation periods that were present at the beginning and end of the experiment as well as

after the fourth and eighth trials.
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Beyond pre-processing at the collection center, the data was temporally convolved with

a smoothing kernel ([.1 .2 .4 .2 .1]) on a per-voxel basis, and each presentation set was

normalized by subtracting the mean activation over the entire presentation set from each

image. Separate training and testing sets were used for the feature selection and classifica-

tion process, although the details differed based on the type of experiment. The analysis

included “primitive experiments” that were computationally inexpensive and “elaborate”

experiments that increased the amount of cross-validation but required more computation.

Primitive experiments used the third presentation set as the test set, used the entire brain

for feature selection, and classified each image from the test set using Gaussian Naive Bayes

or K-Nearest Neighbor classification. More involved experiments restricted data to selected

regions of interest, specifically the occipital pole (OP), calcine fissure (CALC), bilateral

inferior extrastriate cortex (LIES,RIES), bilateral inferior temporal cortex (RIT,LIT), and

bilateral temporal cortex(RT,LT). These experiments performed Leave-3-Out cross valida-

tion for feature selection and classification, and created an average image for each trial for

the classification step. Since there are four presentations of each category, there are 43 = 64

different ways to exclude a trial from each of the three categories, as a result the accuracies

reported are the average number of correct classifications from these 64 different combina-

tions of data used to form training sets. Since trials had been converted to average images,

fewer training images were available and the K-Nearest Neighbor classification algorithm

seemed most appropriate for analysis.

5.3 Additional Feature Selection Algorithms

Some extensions to the three algorithms discussed so far will also be tested during experi-

mental trials. The first two algorithms are layered feature selection algorithms based on the

core activity and discriminability methods that involve using one feature selection algorithm

(i.e. an activity-based test) to select s voxels, and then from the pool of s voxels choose the

desired nV voxels using the other feature selection algorithm (i.e. discriminability). These

two algorithms will be referred to as Layered-AD and Layered-DA, where the last two let-

ters specify the order of the feature selection algorithms. Two extensions to the three-way

selection algorithm that have been widely adopted in other scenarios by machine learning

researchers also merit discussion. The first extension is spatial pooling where the selection
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algorithm assumes all voxels have the same variances, although these variances are com-

puted separately for each experimental condition. The second extension is temporal pooling

where the selection algorithm assumes the variance of a voxel is the same for the entire time

course regardless of the experimental condition, although different voxels still have different

variances. By using these simplified variance estimates, additional parameters to the model

can be removed reducing the potential for overfitting.

Figure 9: Histogram of Voxel Mean Values

5.4 Profiling fMRI Data

As mentioned earlier, fMRI data was profiled using histograms of means, variances, and

mean differences over the entire population of voxels. Figure 9 shows the distribution of

means for the four possible conditions (fixation, fish, vegetables, trees). Notice that the

x-axis for the fixation condition is in the scale of 10−15. It seems reasonable to assume

that no voxels were very active during fixation. Moreover, the bulk of voxels have low task

means in the range of (-2,2), while a select few have higher means. Figure 10 shows only

larger means. It might be reasonable to assume that these voxels are the ones that are most
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Figure 11: Histogram of Voxel Standard Deviations
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Figure 12: Histogram of Large Activity/Task Differences

discriminative. Figure 11 shows the distributions of the standard deviation over the entire

time course for the population of voxels. Note that most standard deviations are between

0 and 2.5, with a small fraction larger than 2.5. Since task means are small, it made sense

to show a histogram of large task-activity differences and task-task differences. Figure 12

compares the large differences in means between fish and fixation as well as between fish and

vegetables, removing differences in the range of (-2,2). The scale of the histogram confirms

that only a few voxels are either active or discriminatory for a given contrast. It is also

readily apparent that more voxels are active, while fewer voxels have large differences between

means. Is this grounds to conclude that activity-based feature selection may do better than

discriminability-based feature selection simply on the basis of having more voxels to choose?

The hypothesis is certainly interesting, and will be investigated in the next section.

5.5 Profiling Feature Selection

Having compiled aggregate statistics for the population of the brain, it seemed that the

next step would be to take a look at “case studies” in feature selection - voxels that are ranked
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Figure 13: Highest Scoring Voxel in an Activity Test

as very discriminative and somewhat discriminative by the feature selection algorithms. To

achieve this end, we created a function that would take the scores of voxels from the three

different feature selection algorithms and create “profiles” of the voxels predicted to be most

discriminative, including information such as the feature score, anatomical region, mean,

variance, and time course of the data in the profile.

Consider the profile for the top voxel selected by activity-based feature selection, as shown

in Figure 13. Note that this voxel is also scored highly by a three-way test, although not by

a discriminability test. Although the differences in the means are not very large, the means

themselves are high and the standard deviation is also fairly low, yielding a high signal-

to-noise ratio. Note that the standard deviation is approximately equal across conditions.

Contrast this profile with that of the best voxel according to a discriminability test.

Figure 14 shows the top voxel as ranked by discriminability scoring. Notice that the other

two algorithms do not rank this voxel highly, although the three-way selection algorithm
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Figure 14: Highest Scoring Voxel in a Discriminability Test

assigns a much better ranking to this voxel than the activity-based algorithm. Moreover, note

that the differences in mean value are fairly large, close to the estimates used in the modeling

simulations in previous sections as well as large relative to one another. However, the

standard deviations vary greatly depending on the experimental condition and are all fairly

large, especially in comparison with the standard deviation of the voxel selected by activity-

based selection. Paired with the disastrous effect of a high standard deviation shown in the

synthetic data studies, this pairing suggests the fundamental problem with discriminability

based feature selection is a low signal-to-noise ratio. How can the desire for discriminative

voxels be reconciled with robust feature selection? Three-way feature selection may be the

answer.

Figure 15 shows the best voxel in the three-way selection ranking system. Note that

this voxel is ranked highly by both the activity-based and the discriminability based se-

lection methods. Moreover, the difference in the mean values is relatively large, although
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Figure 15: Highest Scoring Voxel in a Three-Way Test

not quite as large as the values used in our modeling. Compensating for the smaller differ-

ences in mean are lower standard deviations, which are close to those selected by the top

voxel activity-based feature selection. The standard deviations are also relatively consistent

between conditions, unlike the variances in the voxel of the discriminability test. For the

first 25 features, three-way selection consistently chooses high signal-to-noise voxels, and the

choice of these voxels seems to influence its success in synthetic experiments.

Given the overlap between the three-way selection algorithm and the two other algorithms,

it would be interesting to quantify the overlap. Instead of simply reporting an overlap,

a more insightful idea might be investigating the anatomical regions that overlap between

feature selection algorithms. Figure 16 demonstrates the overlap between three-way selection

and activity and discriminability tests. The three-way algorithm selects voxels from the

same regions as both activity and discriminability tests, while some regions show no overlap

whatsoever between activity and discriminability tests. Note that a total of 17 voxels are
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Figure 16: Frequent Regions of Feature Selection by Algorithm

chosen from the region “OP” (occiptal pole) between activity and three-way selection tests

while none are selected by discriminability. Conversely, both discriminability and three-way

selection tests select data from “RIES” (right inferior extrastriate cortex), while activity-

based selects no voxels from the region. Finally, discriminability tests can choose data

from regions that may be very discriminative but not necessarily relevant to the task. For

example, discriminability-based selection chooses seven voxels from the region “LCBELL”

(left cerebellum) while no other algorithms choose from that region. Also note that the

regions displayed are those with the most voxels represented by selection. Looking at the

entire frequency list shows that voxels selected using activity-based methods are clustered in a

few regions, while discriminability-based selection chooses a few voxels from many regions in

the brain. Three-way selection compromises between the two, still selecting clusters of voxels

from some regions but selecting from more regions overall than activity-based selection.

While three-way selection seems to incorporate the best of both worlds, the profiles show

that the performance of the algorithm may begin to degrade quickly. Activity-based tests

continue to pick voxels with low variance with respect to task means; the standard deviation
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Figure 17: Low Signal-to-Noise Ratios in Three Way Feature Selection

is less than or approximately equal to the task means in the top fifty selected voxels. Dis-

criminability tests continue to choose discriminative voxels even if they have high variance,

in the worst case the standard deviation may be three times the difference in task means.

Contrast this with three-way selection, which selects voxels that show a trend toward in-

creasing variance with respect to mean, yielding lower signal-to-noise ratios as more voxels

are chosen. While the standard deviations remain low, remaining in the range of 1 to 3, the

task means can sometimes me small as well. Figure 17 shows the state of three-way feature

selection at the end of the selection set, with very low signal-to-noise ratios. The problem

in this scenario is that, as noted earlier, discriminability measures can be excessive as the

difference in means need not be very large to obtain good classifier accuracy. On the other

hand, the effects of variances cause performance to degrade much more rapidly. As a result,

it seems likely that three-way selection will suffer the same fate as discriminability-based

feature selection for larger selection sets, although cursory investigation shows no obvious

trend in the deterioration of classification accuracy.
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In contrast, the layered feature selection algorithms described earlier intuitively show some

promise. If activity-based selection is capable of selecting consistent, low-variance voxels

then it should be able to select the best voxels from a seed pool of discriminative voxels.

Correspondingly, if activity-based feature selection can guarantee low-variance voxels, then a

discriminability test will find the most discriminative voxels in that pool. The problem is that

even in the best voxels selected by these two approaches, the ranking for the complementary

algorithm is fairly low. It’s possible that the voxels an activity-test would choose might

never show up in the top 10% of voxels selected using a discriminability-test.

5.6 Results from Classification

Γ / Subject 354B 357B 362B 367B 371B Average

Activity’ .245 .294 .598 .461 .560 .431
Discriminability’ .392 .255 .461 .324 .464 .380
Layered-AD .402 .226 .412 .392 .310 .348
Layered-DA .304 .245 .441 .461 .610 .412
ThreeWay .382 .284 .500 .510 .369 .410
ThreeWay-Spatial .431 .147 .589 .216 .464 .365
ThreeWay-Temporal .402 .265 .461 .490 .417 .407

Table 7: Naive Bayes Classification Accuracy for Five Subjects

The culmination of this thesis is to attempt to apply the findings from all of the earlier

sections in the form of implementation and experimental validation. Tests of synthetic data

showed that three-way feature selection would outperform activity-based feature selection.

By applying a three-way feature selection algorithm to the three-categories data set to choose

Γ / Subject 354B 357B 362B 367B 371B Average

Activity’ .255 .422 .324 .314 .490 .361
Discriminability’ .490 .382 .294 .196 .422 .357
Layered-AD .324 .343 .333 .451 .255 .341
Layered-DA .304 .284 .431 .441 .411 .376
ThreeWay .412 .226 .402 .304 .382 .345
ThreeWay-Spatial .422 .275 .373 .422 .402 .337
ThreeWay-Temporal .245 .411 .441 .235 .252 .378

Table 8: 1-Nearest Neighbor Accuracy for Five Subjects
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fifty voxels and attempting to classify the test set on the basis of those features, the resulting

accuracies may support the use of three-way feature selection.

Note that the first set of data is from “primitive experiments”, where presentation set 3

was reserved as a test set and the remaining data was used for feature selection and classifier

training. An algorithm that randomly guessed labels would have an accuracy of .333. The

accuracy of classification is shown in Table 7 for the Gaussian Naive Bayes classifier and

Table 8 for a 1-Nearest Neighbor classifier. The feature selection algorithms tested are

those mentioned in the “Feature Selection Algorithms” section of the synthetic data. Briefly

reviewing these algorithms:

Activity’: Assumes that there are no active voxels and ranks voxel data based on how

“improbable” it is based on this assumption.

Discriminability’: Assumes that there are no discriminative voxels and ranks voxel data

based on how “improbable” it is based on this assumption.

Layered-AD: Uses the Activity’ test to select 10% of the data as a selection pool and then

chooses the requisite voxels from the selection pool using Discriminability’

Layered-DA: Uses the Discriminability’ test to select 10% of the data as a selection pool

and then chooses the requisite voxels from the selection pool using Activeity’

ThreeWay: Described in Table 6. Estimates the parameters of the distributions and ranks

voxels based on how well their parameters predict the trial labels.

ThreeWay-Spatial: Similar to ThreeWay, but uses the variance estimate for the entire

brain for each condition, so in the case of three conditions there are three estimates

for the entire brain.

ThreeWay-Temporal: Similar to ThreeWay but assumes the variance of a voxel is the

same for all conditions.

From the results of the Naive Bayes classification it appears that no variant of ThreeWay

or Layered clearly outperforms activity, and the results of 1-Nearest Neighbor classification

show a similar trend, although using the Layered-DA algorithm does increase the accuracy

of the Activity test. The failure of these algorithms throws suspicion on the model of data

used in the previous sections; if the predictions regarding the relative performance of feature
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Γ / Subject 354B 357B 362B 367B 371B Average

Activity’ + 1-NN .406 .552 .583 .974 .802 .663
ThreeWay + 1-NN .833 .521 .667 .917 .833 .754
Activity’ + 2-NN .375 .375 .604 .990 .698 .608
ThreeWay + 2-NN .719 .349 .604 .917 .771 .672
Activity’ + 3-NN .370 .443 .656 .958 .750 .635
ThreeWay + 3-NN .833 .344 .620 .917 .833 .695

Table 9: K-Nearest Neighbor Accuracies with Leave-3-Out Cross-Validation

selection algorithms were incorrect, perhaps the other insights gained from the model are also

subject to inaccuracy in the face of variable data. Given these disappointing results, a more

elaborate training-testing cross-validation procedure mentioned earlier, that used k-Nearest

Neighbor on averaged images was used to confirm this conclusion. The results from a Leave-

3-Out cross-validation are shown in Table 9. Notice that rigorous testing seems to show

a clearer advantage for the three-way feature selection algorithm regardless of the number

of neighbors. Moreover, the accuracy of this algorithm across subjects is fairly impressive,

achieving over 75% average accuracy in comparison with a 33% baseline. Although the

reconciliation between these results and those presented from the more primitive testing

method is not obvious, the proposed three-way feature selection algorithm clearly shows

potential in the problem setting described here, and merits further study.

6: Conclusion

This document describes a project devoted to understanding an apparent contradiction in

feature selection, the superior performance of activity tests in classification tasks. Creating

a model of fMRI data and defining the feature selection process analytically permitted a

glimpse into the factors that influence feature selection. One puzzle that arose was the

interference presented by nondiscriminatory active voxels in activity-based feature selection.

Some hypotheses to account for this discrepancy were tested, but the most fruitful results

came from experiments with synthetic data.

Initial experiments using synthetic data confirmed the findings presented by the analytical

model, namely that discriminability tests outperform activity tests in most cases due to the

ability of discriminability tests to perform accurate feature selection with a small difference
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in task means despite significant noise. More elaborate experiments using different feature

selection methods demonstrated that the magnitude of the difference in task means cou-

pled with high variance could have severely adverse effects on discriminability-based feature

selection. In addition to this finding, synthetic data suggested a new feature selection al-

gorithm that predicted the labels, or experimental condition, of all data could outperform

both discriminability and activity-based feature selection. This hypothesis was investigated

and tested using real fMRI data.

The approach to understanding real fMRI data involved profiling the activity and vari-

ability of the entire population of voxels in the brain, and then concentrating on the details

of the top voxels chosen by our feature selection algorithms. The findings from aggregate

studies showed that most voxels in the brain are either inactive or not very discriminative.

Narrowing the search to voxels showing activity or discriminability showed a small subset

of the brain that demonstrated high activity or high discriminability. In hopes of finding

more information about these voxels, profiles of the top voxels from feature selection were

scrutinized for clues about the underlying operation of feature selection.

The data seem to suggest that different feature selection algorithms select based on differ-

ent metrics. Activity-based feature selection selects voxels that show task activity but since

many voxels fit this description, those with the lowest variance are chosen. Discriminability-

based feature selection chooses voxels that discriminate well between tasks, but will select

voxels with high variance if they are discriminative enough. The new candidate feature se-

lection algorithm, three-way feature selection, attempts to straddle the gap between the two

major feature selection algorithms. The voxels it chooses are both discriminative and active.

The initial choices from this algorithm have low variance, but as more selections are made,

low variance is sometimes compromised for high discriminability.

If there is a key to understanding feature selection in fMRI data, the most likely keyword

is variance. The reason discriminability tests perform poorly in a variety of situations is that

they select discriminative voxels at the cost of data variance. High variance implies that the

voxel may have inconsistent activity, but can also cripple a feature selection algorithm that

uses estimates of variance such as the Gaussian Naive Bayes classifier. On the other hand,
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the performance of activity-based feature selection takes no large risks. Voxels selected may

barely discriminate between conditions, but the data itself has low variance with respect to

the means. This, it seems, is a recipe for success; if the chosen voxel is not very discriminative,

its contribution in classification is unnoticed while the occasional discriminative voxel forms

the heart of the classification algorithm.

To supplement these investigations, experimental tests of the different feature selection

algorithms were undertaken on a semantic categories data set. While the results do not

entail a significant difference between feature selection algorithms, data from other studies

or more subjects might clarify the conclusions from this study. Additionally, extensions to

the feature selection algorithms described here may have the potential to produce selection

algorithms that have better performance for the classification of the “cognitive state” of

subjects as well as greater anatomical or functional relevance.
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