Reducing Label Cost by Combining Feature Labels and Crowdsourcing

Combining Learning Strategies to Reduce Label Cost 7/2/2011

Jay Pujara jay@cs.umd.edu Ben London blondon@cs.umd.edu Lise Getoor getoor@cs.umd.edu University of Maryland, College Park

Labels are expensive

- Immense amount of data in the real world
- Often, no corresponding glut of labels
 - Precise labels may require expertise
 - Must ensure training labels have good coverage

Two strategies to mitigate cost

• Leverage unlabeled data in learning

• Find a cheaper way to annotate

Two strategies to mitigate cost

- Leverage unlabeled data in learning
 - Bootstrapping: Use your labeled data to generate labels for unlabeled data
 - Active Learning: Choose the most useful unlabeled data to label
- Find a cheaper way to annotate
 - Feature Labels: Use a heuristic to generate labels
 - **Crowdsourcing:** Get non-experts to provide labels

Feature Labels + Bootstrapping

- Feature Labels
 - Choose features that are highly correlated with labels
 - Remove features from input and use as labels
 - Possibly introduces bias into training data
- Bootstrapping
 - Train a classifier on labeled data
 - Predict labels on unlabeled data
 - Use the most confident predictions as labels

McCallum, Andrew and Nigam, Kamal. Text classification by bootstrapping with keywords, EM, and shrinkage. ACL99

Active Learning + Crowdsourcing

- Active Learning
 - Train a classifier
 - Predict labels on unlabeled data
 - Choose least confident predictions for label acquisition
- Crowdsourcing
 - Provide data to non-experts, reward for labels
 - Few requirements/guarantees about labelers
 - Resulting labels may be noisy, gamed

Ambati, V., Vogel, S., and Carbonell, J. Active learning and crowd-sourcing for machine translation. LREC10

Comparing Learning/Annotation Strategies

- Active Learning
 - Find labels for uncertain instances
- Bootstrapping
 - Find labels for certain instances
- Feature Labels
 - High precision, Low coverage
- Crowdsourcing
 - Low precision, High coverage

Active Bootstrapping

- Input: Feature label rules **F**, unlabeled data, **U** and constants *T*, *k* and α
- Initialize S by applying feature labels F to data U
- For t = I, ...,T:
 - Train a classifier on **S**
 - Predict labels on U
 - Add top-k most certain positive predictions to **S**
 - Add top-k most certain negative predictions to **S**
 - $^\circ\,$ Add crowdsourced responses to top- αk uncertain predictions to ${\bf S}$
 - **U** = **U S**
- Output: Classifier trained on S

Evaluation on Twitter dataset

- Task: Sentiment Analysis (happy/sad tweets)
- Data: 77920 normalized* tweets originally containing emoticons (6/2009-12/2009)
- Evaluation Set: 500 hand-labeled tweets
- Feature labels: happy and sad emoticons from Wikipedia
- Crowdsourcing: HIT on Amazon's Mechanical Turk platform. Use known evaluation set labels to validate results
- Active Learning/Bootstrapping: Use MEGAM maximum entropy classifier label probabilities

Yang, Jaewon and Leskovec, Jure. Patterns of temporal variation in online media.WSDM11 Wikipedia: List of Emoticons http://en.wikipedia.org/wiki/List_of_emoticons Daumé III, Hal. http://www.cs.utah.edu/~hal/megam/

Experiments on Twitter dataset

• Compare different approaches:

• Feature Labels + Bootstrapping

- Start with seed set of IK, 2K, IOK feature labels
- Add 10% of seed set in each iteration
- Crowdsourcing + Bootstrapping
 - Start with 2000 crowdsourced labels (1000 instances)
 - After validation, 670 labels
 - Add 200 new labels in each iteration
- \circ Active Bootstrapping (k=50, α =2)
 - Start with 1000 labels, add 100* crowdsourced and 100 bootstrapped labels in each iteration

Results:

Active Bootstrapping vs. Feature Labels + Bootstrapping

- Same amount of data per iteration
- Active Bootstrapping outperforms Feature Labels + Bootstrapping, at minimal cost (\$16)

Results:

Active Bootstrapping vs. Feature Labels + Bootstrapping

 Even with additional starting data, Feature Labels + Bootstrapping starts well but is eventually overcome by Active Bootstrapping

Results:

Active Bootstrapping vs. Crowdsourcing + Bootstrapping

• Both methods cost about the same (\$16), but Active Bootstrapping clearly outperforms.

Cost

- Active Bootstrapping combines the best of both worlds:
 - Minimal time/expense from domain expert (to create feature labels)

Results: Summary

Method	Err, IO	Err, 18
Feature Lables, IK	.332	.367
Feature Lables, 2K	.302	.353
Feature Lables, 10K	.295	.348
Crowdsource, 2K	.374	.478
Active Bootstrapping	.332	.292

Thank You!

- Reduce label cost by combining strategies
- Introduce algorithm, Active Bootstrapping:
 - Combines complementary annotation strategies (feature labels and crowdsourcing)
 - Combines complementary learning strategies(bootstrapping and active learning)
- Evaluate on a real-world dataset/task (sentiment analysis on Twitter), show superior results

Read the full paper: http://bit.ly/activebootstrapping

Questions?