Ontology-Aware Partitioning for Knowledge Graph Identification

Jay Pujara, Hui Miao, Lise Getoor, William Cohen

Workshop on Automatic Knowledge Base Construction 10/27/2013

Knowledge Graph Ingredients: Entities

Knowledge Graph Ingredients: Labels

Knowledge Graph Ingredients: Relations

Knowledge Graph Nuisance: Noise!

Knowledge Graph Ingredients: Ontology

Ontological rules for Knowledge Graphs

Inverse:

 $\mathbf{w_O}: \text{Inv}(R, S) \qquad \tilde{\wedge} \text{ Rel}(E_1, E_2, R) \Rightarrow \text{Rel}(E_2, E_1, S)$

Selectional Preference:

 $\mathbf{w_O}: \mathrm{DOM}(R, L) \quad \tilde{\wedge} \; \mathrm{Rel}(E_1, E_2, R) \; \Rightarrow \; \mathrm{Lbl}(E_1, L)$

 $\mathbf{w_O}: \operatorname{RNG}(R, L) \qquad \tilde{\wedge} \operatorname{REL}(E_1, E_2, R) \Rightarrow \operatorname{LBL}(E_2, L)$

Subsumption:

 $\mathbf{w_O}: \mathrm{Sub}(L,P) \qquad \tilde{\wedge} \ \mathrm{Lbl}(E,L) \qquad \Rightarrow \ \mathrm{Lbl}(E,P)$

 $\mathbf{w_O}: \mathrm{RSub}(R,S) \quad \tilde{\wedge} \; \mathrm{Rel}(E_1,E_2,R) \; \Rightarrow \; \mathrm{Rel}(E_1,E_2,S)$

Mutual Exclusion:

 $\mathbf{w_O}: \mathrm{Mut}(L_1, L_2) \quad \tilde{\wedge} \ \mathrm{Lbl}(E, L_1) \qquad \Rightarrow \ \tilde{\neg} \mathrm{Lbl}(E, L_2)$

 $\mathbf{w_O}: \mathrm{RMut}(R,S) \quad \tilde{\wedge} \ \mathrm{Rel}(E_1,E_2,R) \ \Rightarrow \ \tilde{\neg} \mathrm{Rel}(E_1,E_2,S)$

Knowledge Graph Identification (KGI)

- Joint inference over possible knowledge graphs
 - Resolves co-referent entities
 - Removes spurious labels and relations
 - Infers missing labels and relations
 - Uses many uncertain sources
 - Enforces ontological constraints

KGI: Under the Hood

Define a probability distribution over knowledge graphs:

$$P(G \mid D) = \frac{1}{Z} \exp \left[-\sum_{r \in R} w_r \varphi_r(G) \right]$$
 weighted potential takes the form of a hinge-loss

- Hinge-Loss Markov Random Fields
 - Templated: easy to define with probabilistic soft logic
 - Continuous: atoms have continuous truth values in [0,1] range
 - Efficient: inference via convex optimization in O(|R|)
- Superior speed and quality for KGI (Pujara, ISWC13)

Problem: Knowledge Graphs are HUGE

Problem: Knowledge Graphs are HUGE

Solution: Partition the Knowledge Graph

Partitioning: advantages and drawbacks

- Advantages
 - Smaller problems
 - Parallel Inference
 - Speed / Quality Tradeoff
- Drawbacks
 - Partitioning large graph time-consuming
 - Key dependencies may be lost
 - New facts require re-partitioning

Key idea: Ontology-aware partitioning

Partition the ontology graph, not the knowledge graph

Induce a partitioning of the knowledge graph based on the ontology partition

Considerations: Ontology-aware Partitions

- Advantages:
 - Ontology is a smaller graph
 - Ontology coupled with dependencies
 - New facts can reuse partitions
- Disadvantages:
 - Insensitive to data distribution
 - All dependencies treated equally

Refinement: include data frequency

Annotate each ontological element with its frequency

Partition ontology with constraint of equal vertex weights

Refinement: weight edges by type

Weight edges by their ontological importance

Datasets & Metrics

- Data from Never-ending Language Learner (NELL) from iteration 165
- Consists of over 1M extractions and a rich ontology
- Evaluation set from (Jiang, ICDM12) with 4.5K labeled extractions
- Report AUC-PR and running time, optimization terms of slowest partition

Inputs			
Candidate Labels	1.2M		
Candidate Relations	100K		
Types			
Unique Labels	235		
Unique Relations	221		
Ontology			
Dom	418		
Rng	418		
Inv	418		
Sub	288		
RSub	461		
Mut	17.4K		
RMut	48.5K		

Experiments: Partitioning Approaches

Comparisons (6 partitions):

NELL Default promotion strategy, no KGI

KGI No partitioning, full knowledge graph model

baseline KGI, Randomly assign extractions to partition

Ontology KGI, Edge min-cut of ontology graph

O+Vertex KGI, Weight ontology vertices by frequency

O+V+Edge KGI, Weight ontology edges by inv. frequency

	AUPRC	Running Time	Opt. Terms
NELL	0.765	-	
KGI	0.794	97	10.9M
baseline	0.780	31	3.0M
Ontology	0.788	42	4.2M
O+Vertex	0.791	31	3.7M
O+V+Edge	0.790	31	3.7M

Experiments: Scalability (Ont+Vertex)

Partitions vs. Performance

Conclusion

- Knowledge Graph Identification: a powerful technique for constructing consistent knowledge graphs...
- Scalability is still a concern for real-world applications
- Partitioning can address scalability concerns
- Ontology-aware partitioning partitions the ontology instead of the knowledge graph
- Including data distribution information balances partitions
- Results on the NELL dataset show this strategy reduces running time from 97 minutes to 12 minutes without significant AUC degradation

Code Available on GitHub:

https://github.com/linqs/KnowledgeGraphIdentification